Tuesday, December 19, 2017

A naive constructible sheaf

In this post we describe a constructible sheaf over $X=\Ran^{\leqslant n}(M)\times \R_{>0}$ valued in simplicial complexes, for a compact, smooth, connected manifold $M$. We note however that it does not capture all the information about the underlying space. Thanks to Joe Berner for helpful ideas.

Recall the category $SC$ of simplicial complexes and simplicial maps, as well as the full subcategories $SC_n$ of simplicial complexes with $n$ vertices (the vertices are unordered). Let $A = \bigcup_{k=1}^n SC_n$ with the ordering $\leqslant_A$ as in a previous post ("Ordering simplicial complexes with unlabeled vertices," 2017-12-03), and $f:X\to A$ the stratifying map. Let $\{A_k\}_{k=1}^N$ be a cover of $X$ by nested open sets of the type $f^{-1}(U_S) = f^{-1}(\{T\in A\ :\ S\leqslant_A T\})$, whose existence is guaranteed as $A$ is finite. Note that $f(A_1)$ is a singleton containg the complete simplex on $n$ vertices.

Remark: For every simplicial complex $S\in A$, there is a locally constant sheaf over $f^{-1}(S)\subseteq X$. Given the cover $\{A_k\}$ of $X$, denote this sheaf by $\mathcal F_k \in \Shv(A_k\setminus A_{k-1})$ and its value by $S_k\in SC$.

Let $i^1:A_1\hookrightarrow A_2$ and $j^2:A_2\setminus A_1 \hookrightarrow A_2$ be the natural inclusion maps . Note that $A_1$ is open and $A_2\setminus A_1$ is closed in $A_2$. The maps $i^1,j^2$ induce direct image functors on the sheaf categories\[i^1_*:\Shv(A_1) \to \Shv(A_2),
\hspace{1cm}
j^2_*:\Shv(A_2\setminus A_1) \to \Shv(A_2).\]The induced sheaves in $\Shv(A_2)$ are extended by 0 on the complement of the domain from where they come. Note that since $A_2\setminus A_1\subseteq A_2$ is closed, $j^2_*$ is the same as $j^2_!$, the direct image with compact support. We then have the direct sum sheaf $i^1_*\mathcal F_1 \oplus j_*^2\mathcal F_2 \in \Shv(A_2)$, which we interpret as the disjoint union in $SC$. Then\[\left(i_*^1\mathcal F_1 \oplus j_2^*\mathcal F_2\right)(U) = \begin{cases}
S_1 & \text{ if }U\subseteq A_1, \\
S_2 & \text{ if }U\subseteq A_2\setminus A_1, \\
S_1\sqcup S_2 & \text{ else,}
\end{cases}
\hspace{1cm}
\left(i_*^1\mathcal F_1 \oplus j_2^*\mathcal F_2\right)_{(P,t)} = \begin{cases}
S_1 & \text{ if } (P,t)\in A_1, \\
S_2 & \text{ if }(P,t)\in \text{int}(A_2\setminus A_1), \\
S_1\sqcup S_2 & \text{ else,}
\end{cases}\]for $U\subseteq A_2$ open and $(P,t)\in A_2$. Generalizing this process, we get a sheaf on $X$. The diagram

may be helpful to keep in mind. We use the fact that direct sums commute with colimits (used in the definition of the direct image sheaf) to simplify notation. We then get sheaves\[\begin{array}{r c l}
\mathcal F^1 & \in & \Shv(A_1), \\
i_*^1\mathcal F^1 \oplus j_*^2 \mathcal F^2 & \in & \Shv(A_2), \\
i_*^2i_*^1\mathcal F^1 \oplus i_*^2j_*^2 \mathcal F^2 \oplus j_*^3 \mathcal F^3 & \in & \Shv(A_3), \\
i_*^3i_*^2i_*^1\mathcal F^1 \oplus i_*^3i_*^2j_*^2 \mathcal F^2 \oplus i_*^3j_*^3 \mathcal F^3 \oplus j_*^4 \mathcal F^4 & \in & \Shv(A_4),
\end{array}\]and finally\[i_*^{N-1\cdots 1}\mathcal F^1 \oplus \left(\bigoplus_{k=2}^{N-1} i_*^{N-1\cdots k}j_*^k \mathcal F^k \right) \oplus j_*^N \mathcal F^N \in \Shv(A_N=X),\]where $i_*^{N-1\cdots k}$ is the composition $i_*^{N-1} \circ i_*^{N-2} \circ \cdots \circ i_*^k$ of direct image functors. Call this last sheaf simply $\mathcal F \in \Shv(X)$. Each $i_*^k$ extends the sheaf by 0 on an ever larger domain, so every summand in $\mathcal F$ is non-zero on exactly one stratum as defined by $f:X\to A$. We now have a functor $\mathcal F:Op(X) \to SC$ defined by\[\mathcal F(U) = \bigsqcup_{k=1}^N S_k \delta_{U,A_K\setminus A_{k-1}},
\hspace{1cm}
\mathcal F_{(P,t)} = \bigsqcup_{k=1}^N S_k \delta_{(P,t),\text{cl}(,A_K\setminus A_{k-1})},\]where $\delta_{U,V}$ is the Kronecker delta that evaluates to the identity if $U\cap V \neq \emptyset$ and zero otherwise.

Remark: The sheaf $\mathcal F$ is $A$-constructible, as $\mathcal F|_{f^{-1}(S)}$ is a constant sheaf evaluating to the simplicial complex $S\in A$. However, if we want the cohomology groups to capture how the simplicial complexes change between strata, then we must use a different approach - all groups die when leaving a stratum because of the extension by zero construction.

References: nLab (article "Simplicial complexes")

Tuesday, December 5, 2017

Sheaves, derived and perverse

Let $X,Y$ be topological spaces and $f:X\to Y$ a continuous map. We let $\Shv(X)$ be the category of sheaves on $X$, $D(\Shv(X))$ the derived category of sheaves on $X$, and $D_b(\Shv(X))$ the bounded variant. Recall that $D(\mathcal A)$ for an abelian category $\mathcal A$ is constructed first by taking $C(\mathcal A)$, the category of cochains of elements of $\mathcal A$, quotienting by chain homotopy, then quotienting by all acylic chains.

Remark: Let $\mathcal F\in \Shv(X)$. Recall:
  • a section of $\mathcal F$ is an element of $\mathcal F(U)$ for some $U\subseteq X$,
  • a germ of $\mathcal F$ at $x\in X$ is an equivalence class in $\{s\in \mathcal F(U)\ :\ U\owns x\}/\sim_x$,
  • $s\sim_x t$ iff every neighborhood $W$ of $x$ in $U\cap V$ has $s|_W = t|_W$, for $s\in \mathcal F(U)$, $t\in \mathcal F(V)$,
  • the support of the section $s\in\mathcal F(U)$ is $\supp(s) = \{x\in U\ :\ s \nsim_x 0\}$,
  • the support of the sheaf $\mathcal F$ is $\supp(\mathcal F) = \{x\in X\ :\ \mathcal F_x\neq 0\}$.

Definition: The map $f$ induces functors between categories of sheaves, called
\[\begin{array}{r r c l}
\text{direct image} & f_*\ :\ \Shv(X) & \to & \Shv(Y), \\
& (U\mapsto \mathcal F(U)) & \mapsto & (V\mapsto \mathcal F(f^{-1}(V))),\\[15pt]
\text{inverse image} & f^*\ :\ \Shv(Y) & \to & \Shv(X), \\
& (V\mapsto \mathcal G(V)) & \mapsto & \text{sh}\left(U\mapsto \text{colim}_{V\supseteq f(U)} \mathcal G(V)\right),\\[15pt]
\text{direct image with compact support} & f_!\ :\ \Shv(X) & \to & \Shv(Y), \\
& (U\mapsto \mathcal F(U)) & \mapsto & \left(V\mapsto \left\{ s\in\mathcal F(f^{-1}(V))\ :\ f|_{\supp(s)} \text{ is proper}\right\}\right).
\end{array}\]

Above we used that $f:X\to Y$ is proper if $f^{-1}(K)\subseteq X$ is compact, for every $K\subseteq Y$ compact. Next, recall that a functor $\varphi:\mathcal A\to \mathcal B$ induces a functor $R\varphi:D(\mathcal A)\to D(\mathcal B)$, called the (first) derived functor of $\varphi$, given by $R\varphi(A^\bullet) = H^1(\varphi(A)^\bullet)$.

Remark: Each of the maps $f_*,f^*,f_!$ have their derived analogues $Rf_*, Rf^*,Rf_!$, respectively. For reasons unclear, $Rf_!$ has a right adjoint, denoted $Rf^!:D(\Shv(Y))\to D(\Shv(X))$. This is called the exceptional inverse image.

We are now ready to define perverse sheaves.

Definition: Let $A^\bullet \in D(\Shv(X))$. Then:
  • the $i$th cohomology sheaf of $A^\bullet$ is $H^i(A^\bullet) = \ker(d^i)/\im(d^i)$,
  • $A^\bullet$ is a constructible complex if $H^i(A^\bullet)$ is a constructible sheaf for all $i$,
  • $A^\bullet$ is a perverse sheaf if $A^\bullet\in D_b(\Shv(X))$ is constructible and $\dim(\supp(H^{-i}(P))) \leqslant i$ for all $i\in \Z$ and for $P=A^\bullet$ and $P=(A^\bullet)^\vee = (A^\vee)^\bullet$ the dual complex of sheaves.

We finish off with an example.

Example: Let $X = \R$ be a stratified space, with $X_0=0$ the origin and $X_1 = \R\setminus 0$. Let $\mathcal F\in \Shv(X)$ be an $\R$-valued sheaf given by $\mathcal F(U) = \inf_{x\in U} |x|$, and define a chain complex $A^\bullet$ in the following way:
\[0 \longrightarrow A^{-1} = \mathcal F \xrightarrow{ d^{-1}=\text{id} } A^0 = \mathcal F \xrightarrow{ d^0=0 } 0.\]
Note that for any $U\subseteq \R$, we have $H^{-1}(A^\bullet)(U) = \ker(d^{-1})(U) = \ker(\id:\mathcal F(U)\to \mathcal F(U)) = \emptyset$ if $0\not\in U$, and $0$ otherwise. Hence $\supp(H^{-1}(A^\bullet)) = \R\setminus 0$, whose dimension is 1. Next, $H^0(A^\bullet)(U) = \ker(d^0)(U)/\im(d^{-1})(U) = \ker(0:\mathcal F(U)\to 0)/\im(\id:\mathcal F(U)\to \mathcal F(U)) = \mathcal F(U)/\mathcal F(U) = 0$, and so $\dim(\supp(H^0(A^\bullet))) = 0$. Note that $A^\bullet$ is self-dual and constructible, as the cohomology sheaves are locally constant. Hence $A^\bullet$ is a perverse sheaf.

References: Bredon (Sheaf theory, Chapter II.1), de Catalado and Migliorini (What is... a perverse sheaf?), Stacks project (Articles "Supports of modules and sections" and "Complexes with constructible cohomology")

Sunday, December 3, 2017

Ordering simplicial complexes with unlabeled vertices

The goal of this post is to describe a partial order on the collection of simplical complexes with $\leqslant n$ unlabeled vertices that is nice in the context of the space $X=\Ran^{\leqslant n}(M)\times \R_{>0}$.

First note that there is a natural order on (abstract) simplicial complexes, given by set inclusion. Interpreting elements of $X$ as simplicial complexes induces a more restrictive order, as new vertices must "split off" from existing ones rather than just be introduced anywhere. Also note that the category usually denoted by $SC$ of simplicial complexes and simplicial maps contains objects with unordered vertices. Here we assume an order on them and consider the action of the symmetric groups to remove the order.

Definition: Let $SC_k$, for some positive integer $k$, be the collection of simplicial complexes with $k$ uniquely labeled vertices. This collection is a poset, with $S\leqslant T$ iff $\sigma\in T$ for every $\sigma\in S$.

The symmetric group on $k$ elements acts on $SC_k$ by permuting the vertices, and taking the image under this action we get $SC_k/S_k$, the collection of simplicial complexes with $k$ unlabeled vertices. This set also has a partial order, with $S\leqslant T$ in $SC_k/S_k$ iff $S'\leqslant T'$ in $SC_k$, for some $S'\in q_k^{-1}(S)$ and $T'\in q_k^{-1}(T)$, where $q_k:SC_k \twoheadrightarrow SC_k/S_k$ is the quotient map.

Definition: For all $i=1,\dots,k$, let $s_{k,i}$ be the $i$th splitting map, which splits the $i$th vertex in two. That is, if the vertices of $S\in SC_k$ are labeled $v_1,\dots,v_k$, then $s_{k,i}$ is defined by
\[\begin{array}{r c l}
s_{k,i}\ :\ SC_k & \to & SC_{k+1}, \\
S & \mapsto & \left\langle S'\cup \{v_i,v_{i+1}\} \cup \displaystyle \bigcup_{\{v_i,w\}\in S'} \{v_{i+1},w\} \right\rangle ,
\end{array}\]where $S'$ is $S$ with $v_j$ relabeled as $v_{j+1}$ for all $j>i$, and $\langle T\rangle$ is the simplicial complex generated by $T$.

By "generated by $T$" we mean generated in the Vietoris-Rips sense, that is, if $\{v_a,v_b\}\in T$ for all $a,b$ in some indexing set $I$, then $\{v_c\ :\ c\in I\}\in \langle T\rangle$. The $i$th splitting map is essentially the $i$th face map used for simplicial sets.

Let $A = \bigcup_{k=1}^n SC_k/S_k$. The splitting maps induce a partial order on $A$, with $S\leqslant T$, for $S\in SC_k/S_k$ and $T\in SC_{k+1}/S_{k+1}$, iff $s_{k,i}(S')\leqslant T'$ in $SC_k$, for some $S'\in q_k^{-1}(S)$, $T'\in q_{k+1}^{-1}(T)$, and $i\in \{1,\dots,k\}$. This generalizes via composition of the splitting maps to any pair $S,T\in A$, and is visually decribed by the diagram below.

Now, let $M$ be a smooth, compact, connected manifold embedded in $\R^N$, and $X=\Ran^{\leqslant n}(M)\times \R_{>0}$. Let $f:X\to A$ be given by $(P,t)\mapsto VR(P,t)$, the Vietoris-Rips complex around the points of $P$ with radius $t$.

Proposition: The map $f:X\to A$ is continuous.

Proof: Let $S\in A$ and $U_S \subseteq A$ be the open set based at $S$. Take any $(P,t)\in f^{-1}(U_S)\subseteq X$, for which we will show that there is an open ball $B\owns (P,t)$ completely within $f^{-1}(U_S)$.

Case 1: $t\neq d(P_i,P_j)$ for all pairs $P_i,P_j\in P$. Then set
\[\epsilon = \min\left\{t, \min_{i<j} |t-d(P_i,P_j)|, \min_{i<j} d(P_i,P_j) \right\}.\]Set $B = B^{\Ran^{\leqslant n}(M)}_{\epsilon/4}(P) \times B^{\R_{>0}}_{\epsilon/4}(t)$, which is an open neighborhood of $(P,t)$ in $X$. It is immediate that $f(P',t')$, for any other $(P',t')\in B$, has all the simplices of $f(P,t)$, as $\epsilon \leqslant |t-d(P_i,P_j)|$ for all $i<j$. If $P_i$ has split in two in $P'$, then for every simplex containing $P_i$ in $f(P,t)$ there are two simplices in $f(P't')$, with either of the points into which $P_i$ split. That is, there may be new simplices in $f(P',t')$, but $f(P',t')$ will be in the image of the splitting maps. Equivalently, $f(P,t)\leqslant f(P',t')$ in $A$, so $B\subseteq f^{-1}(U_S)$.

Case 2: $t= d(P_i,P_j)$ for some pairs $P_i,P_j\in P$. Then set
\[\epsilon = \min\left\{t, \min_{i<j \atop t\neq d(P_i,P_j)} |t-d(P_i,P_j)|,\ \min_{i<j} d(P_i,P_j) \right\},\]and define $B$ as above. We are using the definition of Vietoris-Rips complex for which we add an edge between $P_i$ and $P_j$ whenever $t>d(P_i,P_j)$. Now take any $(P',t')\in B$ such that its image and the image of $(P,t)$ under $f$ are both in $SC_k/S_k$. Then any points $P_i,P_j \in P$ with $d(P_i,P_j)=t$ that have moved around to get to $P'$, an edge will possibly be added, but never removed, in the image of $f$ (when comparing with the image of $(P,t)$). This means that we have $f(P,t)\leqslant f(P',t')$ in $SC_k/S_k$, so certainly $f(P,t)\leqslant f(P',t')$ in $A$. The same argument as in the first case holds if points of $P$ split. Hence $B\subseteq f^{-1}(U_S)$ in this case as well.  $\square$

This proposition shows in particular that $X$ is poset-stratified by $A$