The goal of this post is to describe a natural stratification associated to any stratification, with hopes of it being conical. Let $X$ be a topological space, $(A,\leqslant_A)$ a finite partially ordered set, and $f:X\to A$ a stratifying map. For every $x\in X$, write $A_{>f(x)} = \{a\in A\ :\ a>f(x)\}\subseteq A$, and analogously for $A_{\geqslant f(x)}$. For every $a\in A$, write $X_a = \{x\in X\ :\ f(x)=a\}$.
Definition: For any other stratified space $g\colon Y\to B$, a stratified map $\varphi\colon (X\to A) \to (Y\to B)$ is a pair of maps $\varphi_{XY}\in \Hom_{\Top}(X,Y)$ and $\varphi_{AB}\in \Hom_{\Set}(A,B)$ such that the diagram
commutes. A stratified map $\varphi$ is an open embedding if both $\varphi_{XY}$ and $\varphi_{XY}|_{X_a}\colon X_a\to Y_{\varphi_{AB}(a)}$ are open embeddings.
Recall the cone $C(Y)$ of a space $Y$ is defined as $Y\times [0,1) / Y\times \{0\}$.
Definition: A stratification $f\colon X\to A$ is conical at $x\in X$ if there exist
The image to have in mind is that $Z$ is a neighborhood of $x$ in its stratum $X_{f(x)}$, and $C(Y)$ is an upwards-directed neighborhood of $f(x)$ in $A$. Now we describe how to refine the stratification of an arbitrary stratified space to make it conical.
Definition: Let $\leqslant_{\mathbf P(A)}$ be the partial order on $\mathbf P(A)$ defined in the following way:
Definition: Let $f_{\mathbf P} \colon X\to \mathbf P(A)$ be defined by $f_{\mathbf P}(x)= \displaystyle\min_{\left(\mathbf P(A),\leqslant_{\mathbf P(A)}\right)} \left\{C\ :\ x\in \closure(f^{-1}(C'))\ \forall\ C'\in C\right\}$.
This map is well defined because for each $x\in X$ there are finitely many strata $f^{-1}(a)$ which contain $x$ in their closure. The element $C\in \mathbf P(A)$ containing all such $a$ is the $C$ to which $x$ gets mapped. We now claim this is a stratifying map for $X$.
Proposition: The map $f_{\mathbf P}\colon X\to \mathbf P(A)$ is continuous.
Proof: Let $C\in \mathbf P(A)$. We will show that the preimage via $f_{\mathbf P}$ of the open set $U_C = \mathbf P(C)\subseteq \mathbf P(A)$ is open in $X$ (and such sets $U_C$ are a basis of topology for $\mathbf P(A)$). By definition of the map $f_{\mathbf P}$, we have \[ f_{\mathbf P}^{-1}(U_C) = f^{-1}(U_{\min\{C'\in C\}}) \setminus \left(\bigcup_{(D,E)\in A\times (A\setminus C)} \closure( f^{-1}(D))\cap \closure (f^{-1}(E))\right). \] By continuity of $f$, the set $f^{-1}(U_{\min\{C'\in C\}})$ is open in $X$, and the sets we are subtracting from this open set are all closed. Hence $f_{\mathbf P}^{-1}(U_C)$ is open in $X$. $\square$
Unfortunately, this stratification is difficult to work with. Recall the space $\Ran_{\leqslant n}(M)\times \R_+$ for a very nice (smooth, compact, connected, embedded) manifold $M$, along with the map \[ \begin{array}{r c l}
f\colon \Ran_{\leqslant n}(M)\times \R_{\geqslant 0} & \to & SC, \\
(P,t) & \mapsto & VR(P,t),
\end{array} \] for $VR$ the Vietoris-Rips complex on $P$ with radius $t$. To put a partial order on $SC$, we first say that $S\leqslant T$ in $SC$ whenever there is a path $\gamma:I\to X$ satisfying
Definition: For any other stratified space $g\colon Y\to B$, a stratified map $\varphi\colon (X\to A) \to (Y\to B)$ is a pair of maps $\varphi_{XY}\in \Hom_{\Top}(X,Y)$ and $\varphi_{AB}\in \Hom_{\Set}(A,B)$ such that the diagram
commutes. A stratified map $\varphi$ is an open embedding if both $\varphi_{XY}$ and $\varphi_{XY}|_{X_a}\colon X_a\to Y_{\varphi_{AB}(a)}$ are open embeddings.
Recall the cone $C(Y)$ of a space $Y$ is defined as $Y\times [0,1) / Y\times \{0\}$.
Definition: A stratification $f\colon X\to A$ is conical at $x\in X$ if there exist
- a stratified space $f_x \colon Y\to A_{>f(x)}$,
- a topological space $Z$, and
- an open embedding $Z\times C(Y)\hookrightarrow X$ of stratified spaces whose image contains $x$.
The image to have in mind is that $Z$ is a neighborhood of $x$ in its stratum $X_{f(x)}$, and $C(Y)$ is an upwards-directed neighborhood of $f(x)$ in $A$. Now we describe how to refine the stratification of an arbitrary stratified space to make it conical.
Definition: Let $\leqslant_{\mathbf P(A)}$ be the partial order on $\mathbf P(A)$ defined in the following way:
- For every $x,y\in A$, set $x\leqslant_{\mathbf P(A)} y$ whenever $x\leqslant_A y$, and
- for every $C\in \mathbf P(A)$, set $C\leqslant_{\mathbf P(A)} C'$ for all $C'\in \mathbf P(C)$.
Definition: Let $f_{\mathbf P} \colon X\to \mathbf P(A)$ be defined by $f_{\mathbf P}(x)= \displaystyle\min_{\left(\mathbf P(A),\leqslant_{\mathbf P(A)}\right)} \left\{C\ :\ x\in \closure(f^{-1}(C'))\ \forall\ C'\in C\right\}$.
This map is well defined because for each $x\in X$ there are finitely many strata $f^{-1}(a)$ which contain $x$ in their closure. The element $C\in \mathbf P(A)$ containing all such $a$ is the $C$ to which $x$ gets mapped. We now claim this is a stratifying map for $X$.
Proposition: The map $f_{\mathbf P}\colon X\to \mathbf P(A)$ is continuous.
Proof: Let $C\in \mathbf P(A)$. We will show that the preimage via $f_{\mathbf P}$ of the open set $U_C = \mathbf P(C)\subseteq \mathbf P(A)$ is open in $X$ (and such sets $U_C$ are a basis of topology for $\mathbf P(A)$). By definition of the map $f_{\mathbf P}$, we have \[ f_{\mathbf P}^{-1}(U_C) = f^{-1}(U_{\min\{C'\in C\}}) \setminus \left(\bigcup_{(D,E)\in A\times (A\setminus C)} \closure( f^{-1}(D))\cap \closure (f^{-1}(E))\right). \] By continuity of $f$, the set $f^{-1}(U_{\min\{C'\in C\}})$ is open in $X$, and the sets we are subtracting from this open set are all closed. Hence $f_{\mathbf P}^{-1}(U_C)$ is open in $X$. $\square$
Unfortunately, this stratification is difficult to work with. Recall the space $\Ran_{\leqslant n}(M)\times \R_+$ for a very nice (smooth, compact, connected, embedded) manifold $M$, along with the map \[ \begin{array}{r c l}
f\colon \Ran_{\leqslant n}(M)\times \R_{\geqslant 0} & \to & SC, \\
(P,t) & \mapsto & VR(P,t),
\end{array} \] for $VR$ the Vietoris-Rips complex on $P$ with radius $t$. To put a partial order on $SC$, we first say that $S\leqslant T$ in $SC$ whenever there is a path $\gamma:I\to X$ satisfying
- $\widetilde f(\gamma(0))=S$ and $\widetilde f(\gamma(1))=T$,
- $\widetilde f(\gamma(t))=\widetilde f(\gamma(1))$ for all $t>1$.
- The stratification $f_{\mathbf P}\colon \Ran_{\leqslant n}(M)\times \R_+ \to \mathbf P(SC)$ is conical.
- The stratification $f_{\mathbf P}\colon X\to \mathbf P(A)$ is conical for any stratified space $f\colon X\to A$.
- If $f\colon X\to A$ is already conical, the map $j\colon A\to \mathbf P(A)$ given by $j(a)= \{b\in A\ :\ f^{-1}(a)\subseteq \closure(f^{-1}(b))\}$ is an isomorphism onto its image, and $f_{\mathbf P} = j\circ f$.