The goal of this post is to describe a conical stratification of $\Ran_{\leqslant n}(M)\times \R_{\geqslant 0}$ that refines the stratification previously seen (in "Exit paths, part 2," 2017-09-28, and "Refining stratifiations," 2018-03-11). Thanks to Shmuel Weinberger for the key observation that the strata under consideration are nothing more than semialgebraic sets, which are triangulable, and so admit a conical stratification via this triangulation.
Remark: Fix $n\in \Z_{>0}$, let $M$ be a smooth, compact, connected, embedded submanifold in $\R^N$, and let $M^n$ have the Hausdorff topology. We will be interested in $M^n\times \R_{>0}$, though this will be viewed as the compact set $M^n\times [0,K]\subseteq \R^{nN+1}$ for some $K$ large enough (for instance, larger than the diameter of $M$) when necessary. The point 0 is added for compactness.
Remark: Fix $n\in \Z_{>0}$, let $M$ be a smooth, compact, connected, embedded submanifold in $\R^N$, and let $M^n$ have the Hausdorff topology. We will be interested in $M^n\times \R_{>0}$, though this will be viewed as the compact set $M^n\times [0,K]\subseteq \R^{nN+1}$ for some $K$ large enough (for instance, larger than the diameter of $M$) when necessary. The point 0 is added for compactness.
Stratification of the Ran space by semialgebraic sets
We begin by stratifying $M^n\times \R_{>0}$ by a poset $A$, creating strata based on the pairwise distance between points in each $M$ component. Then we take that to a stratification of the quotient $\Ran^{\leqslant n}(M)\times \R_{>0}$ via the action of the symmetric group $S_n$ and overcounting of points.
Definition: Define a partial order $\leqslant$ on the set $A = \big\{$partitions of ($\{1,\dots,n\}^2\setminus \Delta)/S_2$ into 4 parts$\big\}$ of ordered 4-tuples of sets by \[ (Q,R,S,T) \leqslant \left(Q\setminus Q',\ R\cup Q' \cup S',\ S\setminus (S'\cup S''),\ T\cup S''\right), \] for all $Q'\subseteq Q$ and $S',S''\subseteq S$, with $S'\cap S'' = \emptyset$.
The diagram to keep in mind is the one below, with arrows pointing from lower-ordered elements to higher-ordered elements. Once we pass to valuing the 4-tuple in simplicial complexes, moving between $Q$ and $R$ will not change the simplicial complex type (this comes from the definition of the Vietoris--Rips complex).
Lemma 1: The map $f: M^n\times \R_{>0}\to (A,\leqslant)$ defined by
\begin{align*}
(\{P_1,\dots,P_n\},t)\mapsto \bigg( \{(i,j>i)\ & :\ P_i=P_j\},\ \{(i,j>i)\ :\ d_M(P_i,P_j)<t\},\\
& \{(i,j>i)\ :\ d_M(P_i,P_j)=t\},\ \{(i,j>i)\ :\ d_M(P_i,P_j)>t\}\bigg) \end{align*} is continuous in the upset topology on $(A,\leqslant)$.
Proof: Choose $(Q,R,S,T)\in A$ and consider the open set $U = U_{(Q,R,S,T)}$ based at $(Q,R,S,T)$. Take $(P,t)\in f^{-1}(U)$, which we claim has a small neighborhood still contained within $f^{-1}(U)$. If we move a point $P_i$ slightly that was exactly distance $t$ away from $P_j$, then the pair $(i,j)$ was in $S$, but is now in either $R$ or $T$, and both $(Q,R\cup\{(i,j)\},S\setminus \{(i,j)\},T)$ and $(Q,R,S\setminus \{(i,j)\},T\cup \{(i,j)\})$ are ordered higher than $(Q,R,S,T)$, so the perturbed point is still in $f^{-1}(U)$. If $P_i=P_j$ in $P$ and we move them apart slightly, since $t\in \R_{>0}$, the pair $(i,j)$ will move from $Q$ to $R$, and $(Q,R,S,T) \leqslant (Q\setminus \{(i,j)\},R\cup \{(i,j)\},S,T)$, so the perturbed point is still in $f^{-1}(U)$. For all pairs $(i,j)$ in $R$ or $T$, the distances can be changed slightly so that the pair still stays in $R$ or $T$, respectively. Hence $f$ is continuous. $\square$
This shows that $M^n\times \R_{>0}$ is stratified by $(A,\leqslant)$, using Lurie's definition of a (poset) stratification, which just needs a continuous map to a poset. Our goal is to work with the Ran space of $M$, instead of the $n$-fold product of $M$, which are related by the natural projection map $\pi : M^n\to \Ran^{\leqslant n}(M)$, taking $P=\{P_1,\dots,P_n\}$ to the unordered set of distinct elements in $P$. We also would like to stratify $\Ran^{\leqslant n}(M)\times \R_{>0}$ by simplicial complex type, so we need the following map.
Definition: Let $g: (A,\leqslant)\to SC$ be the map into simplicial complexes that takes $(Q,R,S,T)$ to the clique complex of the simple graph $C$ on $n-k$ vertices, for $|Q|=k(k+1)/2$, defined as follows:
& \{(i,j>i)\ :\ d_M(P_i,P_j)=t\},\ \{(i,j>i)\ :\ d_M(P_i,P_j)>t\}\bigg) \end{align*} is continuous in the upset topology on $(A,\leqslant)$.
Proof: Choose $(Q,R,S,T)\in A$ and consider the open set $U = U_{(Q,R,S,T)}$ based at $(Q,R,S,T)$. Take $(P,t)\in f^{-1}(U)$, which we claim has a small neighborhood still contained within $f^{-1}(U)$. If we move a point $P_i$ slightly that was exactly distance $t$ away from $P_j$, then the pair $(i,j)$ was in $S$, but is now in either $R$ or $T$, and both $(Q,R\cup\{(i,j)\},S\setminus \{(i,j)\},T)$ and $(Q,R,S\setminus \{(i,j)\},T\cup \{(i,j)\})$ are ordered higher than $(Q,R,S,T)$, so the perturbed point is still in $f^{-1}(U)$. If $P_i=P_j$ in $P$ and we move them apart slightly, since $t\in \R_{>0}$, the pair $(i,j)$ will move from $Q$ to $R$, and $(Q,R,S,T) \leqslant (Q\setminus \{(i,j)\},R\cup \{(i,j)\},S,T)$, so the perturbed point is still in $f^{-1}(U)$. For all pairs $(i,j)$ in $R$ or $T$, the distances can be changed slightly so that the pair still stays in $R$ or $T$, respectively. Hence $f$ is continuous. $\square$
This shows that $M^n\times \R_{>0}$ is stratified by $(A,\leqslant)$, using Lurie's definition of a (poset) stratification, which just needs a continuous map to a poset. Our goal is to work with the Ran space of $M$, instead of the $n$-fold product of $M$, which are related by the natural projection map $\pi : M^n\to \Ran^{\leqslant n}(M)$, taking $P=\{P_1,\dots,P_n\}$ to the unordered set of distinct elements in $P$. We also would like to stratify $\Ran^{\leqslant n}(M)\times \R_{>0}$ by simplicial complex type, so we need the following map.
Definition: Let $g: (A,\leqslant)\to SC$ be the map into simplicial complexes that takes $(Q,R,S,T)$ to the clique complex of the simple graph $C$ on $n-k$ vertices, for $|Q|=k(k+1)/2$, defined as follows:
- $V(C) = \{[i]\ :\ i=1,\dots,n,\ [j]= [i] \text{\ iff\ } (i,j)\in Q\}$,
- $E(C) = \{([i],[j])\ :\ (i,j)\in R\cup S\}$.
We require $C$ to be simple, so if $(i,j)\in Q$ and $(i,\ell),(j,\ell)\in R\cup S$, we only add one edge $([i],[\ell])=([j],[\ell])$ to $C$.
The map $g$ induces a partial order $\leqslant$ on $SC$ from the partial order on $A$, with $C\leqslant C'$ in $SC$ whenever there is $(Q,R,S,T)\in g^{-1}(C)$ and $(Q',R',S',T')\in g^{-1}(C')$ such that $(Q,R,S,T) \leqslant (Q',R',S',T')$ in $A$. Note that if $C\in SC$ is not in the image of $g$, then it is not related to any other element of $SC$. By the universal property of the quotient and continuity of $f$ and $g$ (as $A$ and $SC$ are discrete), there is a continuous map $h:\Ran^{\leqslant n}(M)\times \R_{>0}\to (SC,\leqslant)$ such that the diagram
The map $g$ induces a partial order $\leqslant$ on $SC$ from the partial order on $A$, with $C\leqslant C'$ in $SC$ whenever there is $(Q,R,S,T)\in g^{-1}(C)$ and $(Q',R',S',T')\in g^{-1}(C')$ such that $(Q,R,S,T) \leqslant (Q',R',S',T')$ in $A$. Note that if $C\in SC$ is not in the image of $g$, then it is not related to any other element of $SC$. By the universal property of the quotient and continuity of $f$ and $g$ (as $A$ and $SC$ are discrete), there is a continuous map $h:\Ran^{\leqslant n}(M)\times \R_{>0}\to (SC,\leqslant)$ such that the diagram
commutes. Hence $\Ran^{\leqslant n}(M)\times \R_{>0}$ is stratified by $(SC,\leqslant)$.
Remark: The map $\pi$ can be thought of as a quotient by the action of the symmetric group $S_n$, followed by the quotient of the equivalence relation \[ \{P^1_1,\dots,P^{\ell_1}_1,P^1_2,\dots,P^{\ell_2}_2,P^1_3,\dots,P^{\ell_k}_k\} \ \ \sim\ \
\{P^1_1,\dots,P^{\ell_1-1}_1,P^1_2,\dots,P^{\ell_2+1}_2,P^1_3,\dots,P^{\ell_k}_k\} \] on $M^n$, for all possible combinations $\ell_1+\cdots + \ell_k =n$ and $1\leqslant k\leqslant n-1$, where $P_m^i=P_m^j$ for all $1\leqslant i<j\leqslant \ell_m$.
Remark: The map $\pi$ can be thought of as a quotient by the action of the symmetric group $S_n$, followed by the quotient of the equivalence relation \[ \{P^1_1,\dots,P^{\ell_1}_1,P^1_2,\dots,P^{\ell_2}_2,P^1_3,\dots,P^{\ell_k}_k\} \ \ \sim\ \
\{P^1_1,\dots,P^{\ell_1-1}_1,P^1_2,\dots,P^{\ell_2+1}_2,P^1_3,\dots,P^{\ell_k}_k\} \] on $M^n$, for all possible combinations $\ell_1+\cdots + \ell_k =n$ and $1\leqslant k\leqslant n-1$, where $P_m^i=P_m^j$ for all $1\leqslant i<j\leqslant \ell_m$.
Semialgebraic geometry
Next we move into the world of semialgebraic sets and triangulations, following Shiota. Here we come across a more restrictive notion of stratification of a manifold $X$, which requires a partition of $X$ into submanifolds $\{X_i\}$. If Lurie's stratification $f:X\to A$ gives back submanifolds $\{f^{-1}(a)\}_{a\in A}$, then we have Shiota's stratification. Conversely, the poset $(\{X_i\},\leqslant)$, for $X_i \leqslant X_j$ iff $X_i \subseteq \closure(X_j)$ is always a stratification in the sense of Lurie.
Definition 2: A semialgebraic set in $\R^N$ is a set of the form \[ \bigcup_{\text{finite}} \{x\in \R^N\ :\ f_1(x)=0,f_2(x)>0,\dots,f_m(x)>0\},\] for polynomial functions $f_1,\dots,f_m$ on $\R^N$. A semialgebraic stratification of a space $X\subseteq \R^N$ is a partition $\{X_i\}$ of $X$ into submanifolds that are semialgebraic sets.
Next we observe that the strata of $M^n\times \R_{>0}$ are semialgebraic sets, with the preimage theorem and I.2.9.1 of Shiota, which says that the intersection of semialgebraic sets is semialgebraic. Take $(Q,R,S,T)\in A$ and note that \[ f^{-1}(Q,R,S,T) = \left\{(\{P_1,\dots,P_n\},t)\in M^n\times \R_{>0}\ :\ \begin{array}{r l}
d(P_i,P_j) = 0 & \forall (i,j)\in Q,\\
t-d(P_i,P_j) = 0 & \forall (i,j)\in S, \\
t-d(P_i,P_j) > 0 & \forall (i,j)\in R, \\
d(P_i,P_j) - t > 0 & \forall (i,j)\in T.
\end{array}\right\} \] Here $d$ means distance on the manifold, and we assume the metric to be analytic. Alternatively, $d$ could be Euclidean distance between points on the embedding of $M^n\times \R_{>0}$, induced by the assumed embedding of $M$.
For his main Theorem II.4.2, Shiota uses cells, but we opt for simplices instead, and for cell complexes we use simplicial complexes. Every cell and cell complex admits a decomposition into simplicial complexes, even without introducing new 0-cells (by Lemma I.3.12), so we do not lose any generality.
Definition 3: Let $X,Y$ be semialgebraic sets.
- A map $f: X\to Y$ is semialgebraic if the graph of $f$ is semialgebraic.
- A semialgebraic cell triangulation of a semialgebraic set $X$ is a pair $(C,\pi)$, where $C$ is a simplicial complex and $\pi: |C|\to X$ is a semialgebraic homeomorphism for which $\pi|_{\interior(\sigma)}$ is a diffeomorphism onto its image.
- A semialgebraic cell triangulation $(C,\pi)$ is compatible with a family $\{X_i\}$ of semialgebraic sets if $\pi(\interior(\sigma))\subseteq X_i$ or $\pi(\interior(\sigma))\cap X_i = \emptyset$ for all $\sigma\in C$ and all $X_i$.
A semialgebraic cell triangulation $(C,\pi)$ of $X$ induces a stratification $X\to (C_0 \cup \{\pi(\interior(\sigma))\},\leqslant)$, where the order is the one mentioned just before Definition 2. We use the induced stratification and the cell triangulation interchangeably, specifically in Proposition 4.
A compatible conical stratification
Finally we put everything together to get a conical stratification of $\Ran^{\leqslant n}(M)\times \R_{>0}$. Unfortunately we have to restrict ourselves to piecewise linear manifolds, or PL manifolds, which are homeomorphic images of geometric realizations of simplicial complexes, as otherwise we cannot claim $M$ is a semialgebraic set. We can also just let $M=\R^k$, as the point samples we are given could be coming from an unknown space.
Proposition 4: Let $M$ be a PL manifold embedded in $\R^N$. There is a conical stratification $\widetilde h:\Ran^{\leqslant n}(M)\times \R_{>0}\to (B,\leqslant)$ compatible with the stratification $h: \Ran^{\leqslant n}(M)\times \R_{>0}\to (SC,\leqslant)$.
Proof: (Sketch) The main lifting is done by Theorem II.4.2 of Shiota. Since $M$ is PL, it is semialgebraic, and so $M^n\times \R_{>0}\subseteq \R^{nN+1}$ is semialgebraic, by I.2.9.1 of Shiota. Since the quotient $\pi$ of diagram (1) is semialgebraic, the space $\Ran^{\leqslant n}(M)\times \R_{>0}$ is semialgebraic, by Scheiderer. Similarly, $\{f^{-1}(a)\}_{a\in A}$ is a family of semialgebraic sets, where $f$ is the map from Lemma 1. Theorem II.4.2 gives that $\Ran^{\leqslant n}(M)\times \R_{>0}$ admits a cell triangulation $(K,\tau)$ compatible with $\{h^{-1}(S)\}_{S\in SC}$. By the comment after Definition \ref{semialgdef}, this means we have a stratification $\Ran^{\leqslant n}(M)\times \R_{>0}\to (K_0\cup \{\tau(\interior(\sigma))\}_{\sigma\in K},\leqslant)$. Further, by Proposition A.6.8 of Lurie, we have a conical stratification $|K|\to (B,\leqslant)$. This is all described by the solid arrow diagram below.
The vertical induced map comes as the poset $B$ has the exact same structure as the abstract suimplicial complex $K$. The diagonal induced map comes as the map $|K|\to \Ran^{\leqslant n}(M)\times \R_{>0}$ is a homeomorphism, and so has a continuous inverse. Composing the inverse with the conical sratification of Lurie, we get a conical stratification of $\Ran^{\leqslant n}(M)\times \R_{>0}$. Composing the vertical induced arrow and the maps to $(SC,\leqslant)$ show that there is a conical stratification of $\Ran^{\leqslant n}\times \R_{>0}$ compatible with its simplicial complex stratification from diagram (1). $\square$
Shiota actually requires that the space that admits a triangulation be closed semialgebraic, and having $\R_{>0}$ violates that condition. Replacing this piece with $\R_{\geqslant 0}$, then applying Shiota, and afterwards removing the $t=0$ piece we get the same result.
Remark: Every (sufficiently nice) manifold admits a triangulation, so it may be possible to extend this result to a larger class of manifolds, but it seems more sophisticated technology is needed.
References: Shiota (Geometry of subanalytic and semialgebraic sets, Chapters I.2, I.3, II.4), Scheiderer (Quotients of semi-algebraic spaces), Lurie (Higher algebra, Appendix A.6)
Shiota actually requires that the space that admits a triangulation be closed semialgebraic, and having $\R_{>0}$ violates that condition. Replacing this piece with $\R_{\geqslant 0}$, then applying Shiota, and afterwards removing the $t=0$ piece we get the same result.
Remark: Every (sufficiently nice) manifold admits a triangulation, so it may be possible to extend this result to a larger class of manifolds, but it seems more sophisticated technology is needed.
References: Shiota (Geometry of subanalytic and semialgebraic sets, Chapters I.2, I.3, II.4), Scheiderer (Quotients of semi-algebraic spaces), Lurie (Higher algebra, Appendix A.6)
nice blog !!. i found this blog, this is really nice and interested to read. thanks to author for sharing this type of information.
ReplyDeletePhD Topic selection help
PhD Thesis writing services
complete PhD Research Methodology Chapter Writing Services
PhD topic selection help
"Research Methodology For Phd"
dissertation literature review writing services
PhD Assignment Help Service