Showing posts with label cotangent space. Show all posts
Showing posts with label cotangent space. Show all posts

Tuesday, November 1, 2016

Explicit pushforwards and pullbacks

 Preliminary exam prep

Here we consider a map $f:M\to N$ between manifolds of dimension $m$ and $n$, respectively, and the maps that it induces. Let $p\in M$ with $x_1,\dots,x_m$ a local chart for $U\owns p$ and $y_1,\dots,y_n$ a local chart for $V\owns f(p)$. Induced from $f$ are the differential (or pushforward) $df$ and the pullback $df^*$, which are duals of each other:
\[
\begin{array}{r c l}
df_p\ :\ T_p M & \to & T_{f(p)}N \\[10pt]
df\ :\ TM & \to & TN \\
\alpha & \mapsto & (\beta\mapsto \alpha(\beta\circ f)) \\[10pt]\\\\
\end{array}
\hspace{1cm}
\begin{array}{r c l}
df^*_p\ :\ T_{f(p)}^* N & \to & T_p^*M\\[10pt]
df^*\ :\ T^*N & \to & T^*M \\
\omega & \mapsto & \omega\circ f\\[10pt]
\bigwedge ^k T^*N & \to & \bigwedge^k T^*M\\
\omega\ dy_1\wedge\cdots \wedge dy_k & \mapsto & (\omega \circ f)\ d(y_1\circ f)\wedge \cdots \wedge d(y_k\circ f)
\end{array}
\]
These maps may be described by the diagram below.
Example: For example, consider the map $f:\R^3\to \R^3$ given by $f(x,y,z) = (x-y,3z^2,xz+yz)$, with the image having coordinates $(u,v,w)$. With elements
\[
2x\frac\dy{\dy x} - 5z\frac\dy{\dy y}\in TM,
\hspace{2cm}
2uv+\sqrt w-5\in C^\infty(N),
\hspace{2cm}
\cos(uv)\in T^*N,
\]
we have
\begin{align*}
df_p\left(2x\frac\dy{\dy x} - 5z\frac\dy{\dy y}\right)(2uv+\sqrt w-5) & = \left(2x\frac\dy{\dy x} - 5z\frac\dy{\dy y}\right)\left(6(x-y)z^2+\sqrt{xz+yz}-5\right)(p),\\
df_p^*\left( \cos(uv)\right) & = \cos((x-y)3z^2), \\
\left(\textstyle\bigwedge^2 df_p^*\right)(\cos(uv)du\wedge dw) & = \cos((x-y)3z^2)d(3z^2)\wedge d(xz+yz) \\
& = \cos((x-y)3z^2)\left(-6z^2\ dx\wedge dz -6z^2\ dy \wedge dz\right).
\end{align*}