Showing posts with label canonical bundle. Show all posts
Showing posts with label canonical bundle. Show all posts

Tuesday, March 1, 2016

The canonical bundle of projective space and hypersurfaces

Let $\P^n$ be projective $n$-space with coordinates $[x_0:\cdots:x_n]$. Cover $\P^n$ with affine pieces $U_i = \{x_i\neq 0\}$, each of which are $\A^n$, in coordinates $(y_1,\dots,y_n)$, where $y_j = x_j/x_i$. Recall that the canonical bundle of $\P^n$ is the $n$-fold wedge of the cotangent bundle of $\P^n$, or $\omega_{\P^n} = \bigwedge^nT^*_{\P^n}$. The canonical bundle for an arbitrary variety is defined analogously.

Definition: Let $X$ be a projective $n$-dimensional variety. The sheaf of regular functions on $X$ is $\mathcal O_X$, with $\mathcal O_X(U)=\{f/g\ :\ f,g\in k[x_1,\dots,x_n]/I(X), g\neq 0\}$, and the restriction maps are function restriction.

There is a natural grading on $\mathcal O_X$, given by $\deg(f)-\deg(g)$. A shift in the grading may be applied, called a {\it Serre twist}, to get a differently graded (but isomorphic) module: for $\varphi\in \mathcal O_X$ with $\deg(\varphi)=k$, set $\varphi\in\mathcal O_X(\ell)$ to have $\deg(\varphi) = k-\ell$.

Let $\alpha = dy_1\wedge\cdots\wedge dy_n\in \omega_{\P^n}$, which is well-defined on all of $U_i$. We claim this is well-defined on all of $\P^n$. We check this on the overlap $U_0\cap U_n$ (for nicer notation), but the approach is analogous for $U_i\cap U_j$.
\begin{align*}
U_0 & = \{(y_1,\dots,y_n)\ :\ y_i = x_i/x_0\} & y_i & = \frac{z_{i+1}}{z_i} & dy_i & = \frac{z_1dz_{i+1}-z_{i+1}dz_1}{z_1^2} \\
U_n & = \{(z_1,\dots,z_n)\ :\ z_i = x_{i-1}/x_n\} & y_n & = \frac1{z_1} & dy_n & = \frac{-dz_1}{z_1^2}
\end{align*}
Therefore
\begin{align*}
\alpha & = dy_1\wedge\cdots\wedge dy_n \\
& = \frac{z_1dz_2-z_2dz_1}{z_1^2}\wedge\cdots\wedge \frac{z_1dz_n-z_ndz_1}{z_1^2}\wedge \frac{-dz_1}{z_1^2} \\
& = \frac{dz_2}{z_1}\wedge\cdots\wedge \frac{dz_n}{z_1}\wedge \frac{-dz_1}{z_1^2} \\
& = \frac{(-1)^n}{z_1^{n+1}}dz_1\wedge\cdots \wedge dz_n.
\end{align*}
Since the transition function has a pole of order $n+1$ when $z_1 = 0$, which happens when $x_0=0$, we have that $\alpha$ has a pole of order $n+1$ at $\infty$. Therefore $\omega_{\P^n} \cong \mathcal O_{\P^n}(-n-1)$.

Let $X\subset \P^n$ be a smooth hypersurface defined by a degree $d$ equation $F(x_0,\dots,x_n)=0$. On the affine piece $U_0$ this becomes $f(y_1,\dots,y_n)=F(1,\frac{x_1}{x_0},\dots,\frac{x_n}{x_0})$ with $y_i = x_i/x_0$. The total derivative is
\[
\frac{\dy f}{\dy y_1} dy_1 + \cdots + \frac{\dy f}{\dy y_n} dy_n = \sum_{i=1}^n\frac{\dy f}{\dy y_i}dy_i = 0,
\]
and since $X$ is smooth, the terms never all vanish at the same time. Let $V_i=\{\frac{\dy f}{\dy y_i} \neq 0\}$, and set
\[
\beta_i = \frac{(-1)^{i-1}}{\dy f/\dy y_i} dy_1\wedge\cdots \wedge \widehat{d y_i}\wedge \cdots \wedge d y_n \in \omega_X,
\]
which is well-defined on all of $V_i\subset U_0$. We claim that the choice of $V_i$ does not matter, and indeed, assuming $i<j$,
\begin{align*}
\beta_j & = \frac{(-1)^{j-1}}{\dy f/\dy y_j} dy_1\wedge\cdots \wedge \widehat{d y_j}\wedge \cdots \wedge d y_n \\
& = \frac{(-1)^{j-1+i-1}dy_i}{\dy f/\dy y_j} \wedge dy_1\wedge\cdots \wedge \widehat{d y_i}\wedge \cdots \wedge \widehat{d y_j}\wedge \cdots \wedge d y_n \\
& = \frac{(-1)^{j-1+i-1}\frac{-1}{\dy f/\dy y_i}\left(\frac{\dy f}{\dy y_1}dy_1+\cdots + \widehat{\frac{\dy f}{\dy y_i}dy_i} + \cdots + \frac{\dy f}{\dy y_n}dy_n\right)}{\dy f/\dy y_j} \wedge dy_1\wedge\cdots \wedge \widehat{d y_i}\wedge \cdots \wedge \widehat{d y_j}\wedge \cdots \wedge d y_n \\
& = \frac{(-1)^{j-1+i-1+1}\frac{1}{\dy f/\dy y_i}\cdot \frac{\dy f}{\dy y_j}dy_j}{\dy f/\dy y_j} \wedge dy_1\wedge\cdots \wedge \widehat{d y_i}\wedge \cdots \wedge \widehat{d y_j}\wedge \cdots \wedge d y_n \\
& = \frac{(-1)^{j-1+i-1+1+j-2}}{\dy f/\dy y_i} dy_1\wedge\cdots \wedge \widehat{d y_i}\wedge \cdots \wedge d y_n \\
& = \frac{(-1)^{i-1}}{\dy f/\dy y_i} dy_1\wedge\cdots \wedge \widehat{d y_i}\wedge \cdots \wedge d y_n \\
& = \beta_i.
\end{align*}
Hence $\beta_i$ is well-defined on all of $U_0$, and we call it simply $\beta$. Next we claim it is well-defined on all of $X$. Again we only check on the overlap of $U_0\cap U_n$. On the affine piece $U_n$ this becomes $g(z_1,\dots,z_n)=F(\frac{x_0}{x_n},\dots,\frac{x_{n-1}}{x_n},1)=f(\frac{z_2}{z_1},\dots,\frac{z_n}{z_1},\frac1{z_1})$ with $z_i = x_{i-1}/x_n$. We employ the chain rule $\frac{\dy f}{\dy y_i}=\frac{\dy f}{\dy z_j}\frac{\dy z_j}{\dy y_i}$ and the results above to find that
\begin{align*}
\beta & = \frac{(-1)^{i-1}}{\dy f/\dy y_i} dy_1\wedge\cdots \wedge \widehat{d y_i}\wedge \cdots \wedge d y_n \\
& = \frac{(-1)^{i-1}}{\dy f/\dy z_j \cdot \dy z_j/\dy y_i} \frac{z_1dz_2-z_2dz_1}{z_1^2}\wedge \cdots \wedge \widehat{dy_i}\wedge \cdots \wedge \frac{z_1dz_n-z_ndz_1}{z_1^2}\wedge \frac{-dz_1}{z_1^2} \\
& = \frac{(-1)^{i-1}}{\dy f/\dy z_j \cdot \dy z_j/\dy y_i} \frac{(-1)^{n-1}}{z_1^n}dz_1\wedge\cdots \wedge \widehat{dz_i}\wedge \cdots \wedge dz_n \\
& = \frac{(-1)^{i+n}}{\left(\frac{1}{z_1}\right)^{d-1}\left(c+\cdots\right) z_1^n}dz_1\wedge\cdots \wedge \widehat{dz_i}\wedge \cdots \wedge dz_n \\
& = \frac{(-1)^{i+n}}{z_1^{n-d+1} \left(c+\cdots \right)}dz_1\wedge\cdots \wedge \widehat{dz_i}\wedge \cdots \wedge dz_n,
\end{align*}
for some constant $c$. This comes from expressing $f$ in terms of the $z_i$s and factoring. Since the transition function has a pole of order $n-d+1$ when $z_1 = 0$, which happens when $x_0=0$, we have that $\beta$ has a pole of order $n-d+1$ at $\infty$. Therefore $\omega_{X} \cong \mathcal O_{X}(-n+d-1)$.

References: Griffiths and Harris (Principles of Algebraic Geometry, Chapter 1.2)