Showing posts with label poset. Show all posts
Showing posts with label poset. Show all posts

Sunday, December 3, 2017

Ordering simplicial complexes with unlabeled vertices

The goal of this post is to describe a partial order on the collection of simplical complexes with $\leqslant n$ unlabeled vertices that is nice in the context of the space $X=\Ran^{\leqslant n}(M)\times \R_{>0}$.

First note that there is a natural order on (abstract) simplicial complexes, given by set inclusion. Interpreting elements of $X$ as simplicial complexes induces a more restrictive order, as new vertices must "split off" from existing ones rather than just be introduced anywhere. Also note that the category usually denoted by $SC$ of simplicial complexes and simplicial maps contains objects with unordered vertices. Here we assume an order on them and consider the action of the symmetric groups to remove the order.

Definition: Let $SC_k$, for some positive integer $k$, be the collection of simplicial complexes with $k$ uniquely labeled vertices. This collection is a poset, with $S\leqslant T$ iff $\sigma\in T$ for every $\sigma\in S$.

The symmetric group on $k$ elements acts on $SC_k$ by permuting the vertices, and taking the image under this action we get $SC_k/S_k$, the collection of simplicial complexes with $k$ unlabeled vertices. This set also has a partial order, with $S\leqslant T$ in $SC_k/S_k$ iff $S'\leqslant T'$ in $SC_k$, for some $S'\in q_k^{-1}(S)$ and $T'\in q_k^{-1}(T)$, where $q_k:SC_k \twoheadrightarrow SC_k/S_k$ is the quotient map.

Definition: For all $i=1,\dots,k$, let $s_{k,i}$ be the $i$th splitting map, which splits the $i$th vertex in two. That is, if the vertices of $S\in SC_k$ are labeled $v_1,\dots,v_k$, then $s_{k,i}$ is defined by
\[\begin{array}{r c l}
s_{k,i}\ :\ SC_k & \to & SC_{k+1}, \\
S & \mapsto & \left\langle S'\cup \{v_i,v_{i+1}\} \cup \displaystyle \bigcup_{\{v_i,w\}\in S'} \{v_{i+1},w\} \right\rangle ,
\end{array}\]where $S'$ is $S$ with $v_j$ relabeled as $v_{j+1}$ for all $j>i$, and $\langle T\rangle$ is the simplicial complex generated by $T$.

By "generated by $T$" we mean generated in the Vietoris-Rips sense, that is, if $\{v_a,v_b\}\in T$ for all $a,b$ in some indexing set $I$, then $\{v_c\ :\ c\in I\}\in \langle T\rangle$. The $i$th splitting map is essentially the $i$th face map used for simplicial sets.

Let $A = \bigcup_{k=1}^n SC_k/S_k$. The splitting maps induce a partial order on $A$, with $S\leqslant T$, for $S\in SC_k/S_k$ and $T\in SC_{k+1}/S_{k+1}$, iff $s_{k,i}(S')\leqslant T'$ in $SC_k$, for some $S'\in q_k^{-1}(S)$, $T'\in q_{k+1}^{-1}(T)$, and $i\in \{1,\dots,k\}$. This generalizes via composition of the splitting maps to any pair $S,T\in A$, and is visually decribed by the diagram below.

Now, let $M$ be a smooth, compact, connected manifold embedded in $\R^N$, and $X=\Ran^{\leqslant n}(M)\times \R_{>0}$. Let $f:X\to A$ be given by $(P,t)\mapsto VR(P,t)$, the Vietoris-Rips complex around the points of $P$ with radius $t$.

Proposition: The map $f:X\to A$ is continuous.

Proof: Let $S\in A$ and $U_S \subseteq A$ be the open set based at $S$. Take any $(P,t)\in f^{-1}(U_S)\subseteq X$, for which we will show that there is an open ball $B\owns (P,t)$ completely within $f^{-1}(U_S)$.

Case 1: $t\neq d(P_i,P_j)$ for all pairs $P_i,P_j\in P$. Then set
\[\epsilon = \min\left\{t, \min_{i<j} |t-d(P_i,P_j)|, \min_{i<j} d(P_i,P_j) \right\}.\]Set $B = B^{\Ran^{\leqslant n}(M)}_{\epsilon/4}(P) \times B^{\R_{>0}}_{\epsilon/4}(t)$, which is an open neighborhood of $(P,t)$ in $X$. It is immediate that $f(P',t')$, for any other $(P',t')\in B$, has all the simplices of $f(P,t)$, as $\epsilon \leqslant |t-d(P_i,P_j)|$ for all $i<j$. If $P_i$ has split in two in $P'$, then for every simplex containing $P_i$ in $f(P,t)$ there are two simplices in $f(P't')$, with either of the points into which $P_i$ split. That is, there may be new simplices in $f(P',t')$, but $f(P',t')$ will be in the image of the splitting maps. Equivalently, $f(P,t)\leqslant f(P',t')$ in $A$, so $B\subseteq f^{-1}(U_S)$.

Case 2: $t= d(P_i,P_j)$ for some pairs $P_i,P_j\in P$. Then set
\[\epsilon = \min\left\{t, \min_{i<j \atop t\neq d(P_i,P_j)} |t-d(P_i,P_j)|,\ \min_{i<j} d(P_i,P_j) \right\},\]and define $B$ as above. We are using the definition of Vietoris-Rips complex for which we add an edge between $P_i$ and $P_j$ whenever $t>d(P_i,P_j)$. Now take any $(P',t')\in B$ such that its image and the image of $(P,t)$ under $f$ are both in $SC_k/S_k$. Then any points $P_i,P_j \in P$ with $d(P_i,P_j)=t$ that have moved around to get to $P'$, an edge will possibly be added, but never removed, in the image of $f$ (when comparing with the image of $(P,t)$). This means that we have $f(P,t)\leqslant f(P',t')$ in $SC_k/S_k$, so certainly $f(P,t)\leqslant f(P',t')$ in $A$. The same argument as in the first case holds if points of $P$ split. Hence $B\subseteq f^{-1}(U_S)$ in this case as well.  $\square$

This proposition shows in particular that $X$ is poset-stratified by $A$

Sunday, November 26, 2017

Towards a sheaf of simplicial complexes

The goal of this post is to describe a new stratification of $\Ran^n(M)\times \R_{\geqslant 0}$ that builds on the ideas from a previous post (see "The point-counting stratification of the Ran space is conical (really though) ," 2017-11-15) and some newer ones.

Let $SC_n$ be the set of simplicial complexes on $n$ ordered vertices. There is a natural partial order on $SC_n$ given by inclusion of sets, viewing every simplex as a subset of the power set $\mathbf P(\{1,\dots,n\})$. The symmetric group $S_n$ has a natural action on $SC_n$ and $SC_n/S_n$ has an induced partial order as well. Hence we have a map
\[\begin{array}{r c l}
f\ :\ \Ran^n(M)\times \R_{\geqslant 0} & \to & SC_n/S_n, \\
(P,t) & \mapsto & VR(P,t),
\end{array}\]
where $VR(P,t)$ is the Vietoris-Rips complex on $P$ with radius $t$. We include a $k$-cell in $VR(P,t)$ at the vertices $\{P_0,\dots,P_k\}\subset P$ if $d(P_i,P_j)<t$ for all $0\leqslant i<j\leqslant k$. Because we have strict inequality, the map is continuous in the upwards-directed, or Alexandrov topology on $SC_n/S_n$. Indeed, taking the preimage of an open set $U_S$ in $SC_n/S_n$ based at some simplicial complex $S$ (such $U_S$ form the basis of topology on $SC_n/S_n$), there is an open ball of radius $\min_{i<j} d(P_i,P_j)/2$ in the $\Ran^n(M)$ component and $\min_{(P_i,P_j)\subset f(P,t)} |t-d(P_i,P_j)|$ in the $\R_{\geqslant 0}$ component around any $(P,t)\in f^{-1}(U_S)$.

Remark: The above shows that $\Ran^n(M)\times \R_{\geqslant 0}$ is poset-stratified by $SC_n/S_n$, in the sense of Definition A.5.1 of Lurie. However, the strata are all of the same dimension, so there is no chance of this being a conical stratification, in the sense of Definition A.5.5 of Lurie. We hope to fix that with a different stratification.

Definition: Construct a poset $(A,\leqslant_A)$ in the following way:
  • $SC_n/S_n \subset A$, with $S\leqslant_A T$ whenever $S\leqslant_{SC_n/S_n} T$ ,
  • for every $S\neq T\in SC_n/S_n$, let $a_{ST}\in A$ with $a_{ST}\leqslant_A S$ and $a_{ST}\leqslant_A T$,
  • for every $\{S_1,\dots,S_{k>2}\}\subset SC_n/S_n$, let $a_{S_1\cdots S_k}\in A$ with $a_{S_1\cdots S_k} \leqslant_A a_{S_1\cdots \widehat{S_i}\cdots S_k}$ for all $1\leqslant i\leqslant k$.
Define a map into $(A,\leqslant_A)$ in the following way:
\[\begin{array}{r c l}
g\ :\ \Ran^n(M)\times \R_{\geqslant 0} & \to & A, \\
(P,t) & \mapsto & \begin{cases}
S, & \text{ if $(P,t)\in \text{int}(f^{-1}(S))$ for some }S\in SC_n/S_n, \\
a_{S_1\cdots S_k}, & \text{ if }(P,t)\in \text{cl}(f^{-1}(T))\ \iff\ T\in \{S_1,\dots,S_k\}.
\end{cases}
\end{array}\]

We now claim that $g$ is a stratifying map.

Proposition: The map $g$ is continuous.

Proof: Since $\text{int}(f^{-1}(S))\cap \text{int}(f^{-1}(T)) = \emptyset$ for all $S\neq T\in SC_n/S_n$, the open sets $U_S\subseteq A$ based at $S$ all have open preimage $g^{-1}(U_S) \subseteq X$. Now take $(P,t)\in g^{-1}(U_{a_{S_1\cdots S_k}})$, for $k\geqslant 2$. If every open ball around $(P,t)\in X$ intersects $X_{a_{\mathbf T}}$, for some $\mathbf T \subseteq SC_n/S_n$, then $(P,t)$ must be in the closure of $f^{-1}(T)$, for every $T\in \mathbf T$. Hence the only possible such $\mathbf T$ are $\mathbf T\subseteq \{S_1,\dots,S_k\}$, so $g^{-1}(U_{a_{S_1\cdots S_k}})$ is open in $X$. $\square$

The next step would be to show that this stratification is conical, though it is not clear yet if it is.

References: Lurie (Higher Algebra, Appendix A)

Sunday, September 17, 2017

Stratifying correctly

In a previous blog post ("A constructible sheaf over the Ran space," 2017-06-24) it was claimed that there was a particular constructible sheaf over $\Ran^{\leqslant n}(M)\times \R_{\geqslant 0}$. However, the proof actually uses finite ordered subsets of $M$ to make the stratification, rather than finite unordered subsets. This means that the sheaf is actually over $M^{\times n}\times \R_{\geqslant 0}$, and in this post we try to fix that problem.

Let $\Delta_n$ be the "fat diagonal" of $M^{\times n}$, that is, the collection of $P\in M^{\times n}$ for which at least two coordinates are the same. For every $k>0$, there is an $S_k$ action on $M^{\times k}\setminus \Delta_k$, quotienting by which we get a map
\[M^{\times k}\setminus \Delta_k \xrightarrow{\ q_k\ }\Ran^k(M)\]
to the Ran space of degree $k$. The stratification of $M^{\times k}\times \R_{\geqslant 0}$ given in the previous post will be pushed forward to a stratification of $\Ran^k(M)\times \R_{\geqslant 0}$, for all $0<k\leqslant n$. A large part of the work already has been done, it remains to put everything in the right order and check openness. The process is given as follows:
  1. Stratify $\Ran^{\leqslant n}(M)\times \R_{\geqslant 0}$ into $n$ pieces, each being $\Ran^k(M)\times \R_{\geqslant 0}$.
  2. Stratify $(M^{\times k}\setminus \Delta_k)\times \R_{\geqslant 0}$ as in the previous post.
  3. Quotient by $S_k$-action to get stratification of $\Ran^k(M)\times \R_{\geqslant 0}$.

Step 1


As stated in the proof of the Theorem, $\Ran^{\geqslant k}(M)\times \R_{\geqslant 0}$ is open inside $\Ran^{\leqslant n}(M)\times \R_{\geqslant 0}$, allowing us to make a stratification $f:\Ran^{\leqslant n}(M)\times \R_{\geqslant 0}\to A$, where $A$ is the poset
 
where the tail of an arrow is ordered lower than the head. The map $f$ sends $\Ran^k(M)\times \R_{\geqslant 0}$ to $a_k$, which is a continuous map in the upset topology on $A$.

Step 2


As stated in Definition 5, we have a stratification $g_k:(M^{\times k}\setminus \Delta_k) \times \R_{\geqslant 0}\to B_k$, where $B_k$ may be viewed as a directed graph $B_k=(V_k,E_k)$. The vertex set is $V_k = \{0,1\}^{k(k+1)/2}$, whose elements are strings of 1 and 0, and the edge set $E_k$ contains $v\to v'$ iff $d_H(v,v')=1$ and $d_H(v,0)<d_H(v',0)$, for $d_H$ the Hamming distance. Let $U_v\subset B_k$ denote the upset based at $v$, that is, all elements $v'\in B_k$ with $v\leqslant v'$.

Order all distinct pairs $(i,j)\in \{1,\dots,k\}^2$, of which there are $k(k+1)/2$. Under the stratifying map $g_k$, each upset $U_v$ based at the vertex $v\in\{0,1\}^{k(k+1)/2}$ receives elements $(P,t)\in (M^{\times k}\setminus \Delta_k)\times \R_{\geqslant 0}$ satisfying $t>d(P_i,P_j)$ whenever the position representing $(i,j)$ in $v$ is 1. For example, when $k=3$,
To check that $g_k$ is continuous in the upset topology, we restate Lemma 2 in a clearer way.

Lemma 1: Let $U\subset X$ be open and $\varphi:X\to A\subset \R_{\geqslant 0}$ continuous, with $|A|<\infty$. Then
\[\bigcup_{x\in U}\{x\}\times (\varphi(x),\infty)\ \subseteq\ X\times (z',\infty)\]
is open, for any $z'\leqslant z:= \min_{x\in U}\{\varphi(x)\}$.

Proof: Consider the function
\[\begin{array}{r c l}
\psi\ :\ X\times (z',\infty) & \to & X\times (-\infty,z), \\
(x,t) & \mapsto & (x,\varphi(x)-t).
\end{array}\]
Since $\varphi$ is continuous and subtraction is continuous, $\psi$ is continuous (in the product topology). Since $U\times (-\infty,0)$ is open in $X\times (-\infty,z)$, the set $\psi^{-1}(U\times (-\infty,0))$ is open in $X\times (z',\infty)$. For any $x\in U$ and $t=\varphi(x)$, we have $\varphi(x)-t =0$. For any $x\in U$ and $t\to \infty$, we have $\varphi(x)-t\to -\infty$. It is immediate that all other $t\in (\varphi(x),\infty)$ give $\varphi(x)-t\in (-\infty,0)$. Hence $\psi^{-1}(U\times (-\infty,0))$ is the collection of points $(x,t)$ with $t\in (\varphi(x),\infty)$, which is then open in $X\times [0,z')$. $\square$

Applying Lemma 1 to $U=X=M^{\times k}\setminus \Delta_k$ and $\varphi(P) = \max_{i\neq j}\{d(P_i,P_j)\}$, which is continuous, gives that $g_k^{-1}(U_{11\cdots1})\subseteq M^{\times k}\setminus \Delta_k$ is open. This also works to show that $g_k^{-1}(U_v)\subseteq g_k^{-1}(U_{v'})$ is open, for any $v'\leqslant v$, by limiting the pairs of indices iterated over by the function $\varphi$. Hence $g_k$ is continuous.

Step 3


The symmetric group $S_k$ acts on $(M^{\times k}\setminus \Delta_k)\times \R_{\geqslant 0}$ by permuting the order of elements in the first factor. That is, for $\sigma\in S_k$, we have
\[\sigma (P=\{P_1,\dots,P_k\},t) = (\{P_{\sigma(1)},\dots,P_{\sigma(k)}\},t).\]
Note that $((M^{\times k}\setminus \Delta_k)\times \R_{\geqslant 0})/S_k = \Ran^k(M)\times \R_{\geqslant 0}$.

Remark: Graph isomorphism for two graphs with $k$ vertices may also be viewed as the equivalence relation induced by $S_k$ acting on $\Gamma_k = \{$simple vertex-labeled graphs with $k$ vertices$\}$. First, let $G_v$ be the (unique) graph first introduced at element $v\in B_k$ by $g_k$. That is, we have $G_v =VR(P,t)_1$ (the ordered 1-skeleton of the Vietoris--Rips complex on the set $P$ with radius $t$) whenever $g_k((P,t))\in U_v$ and $g_k((P,t))\not\in U_{v'}$ for any $v'\leqslant v$, $v'\neq v$. Then the elements of $B_k$ are in bijection with the elements of $\Gamma_k$ (given by $v\leftrightarrow G_v$), so we have $B_k/S_k = B_k'$. Recall that $v\leqslant v'$ in $B_k$ iff adding an edge to $G_v$ gives $G_{v'}$. In $B_{k'}$, this becomes a partial order on equivalence classes $[w] = \{v\in B_k\ :\ \sigma G_v=G_w\ $for some $\sigma\in S_k\}$. We write $[w]\leqslant [w']$ iff there is a collection of pairs $\{(v_1,v_1'),\dots,(v_\ell,v_\ell')\}$ such that $v_i\leqslant v_i'$ for all $i$, and $\{v_1,\dots,v_\ell\} = [w]$ and $\{v_1',\dots,v_\ell'\} = [w']$ (there may be repetition among the $v_i$ or $v_i'$).

By the universal property of the quotient, there is a unique map $h_k:\Ran^k(M)\times \R_{\geqslant 0}\to B_k'$ that makes the following diagram commute.
This will be our stratifying map. To check that $h_k$ is continuous take $U\subseteq B_k'$ open. As $\pi$ is the projection under a group action, it is an open map, so $\pi^{-1}(U)\subseteq B_k$ is open. Since $g_k$ is continuous in the upset topology, $g_k^{-1}(\pi^{-1}(U))$ is open. Again, $S_k\curvearrowright$ is the projection under a group action, so $(S_k\curvearrowright)(g_k^{-1}(\pi^{-1}(U)))$ is open, giving continuity of $h_k$.