Showing posts with label curve. Show all posts
Showing posts with label curve. Show all posts

Wednesday, March 15, 2017

Lengths of paths on projective varieties

This post contains calculations that continue on the ideas from the previous post "Fubini--Study metric," 2017-03-05. First we suppose that $\gamma$ lies on a curve $C\subset \P^2$, with the curve defined as the zero locus of a polynomial $P$. Taking the derivative of $P$ on $\C^2$ gives $P_{z_1}dz_1 + P_{z_2}dz_2=0$, which can be manipulated to give
\begin{align*}
dz_2 & = \frac{-P_{z_1}}{P_{z_2}}dz_1, & \frac\dy{\dy z_2} & = \frac{-P_{z_2}}{P_{z_1}} \frac\dy{\dy z_1},\\
d\overline{z_2} & = \frac{-\overline{P_{z_1}}}{\overline{P_{z_2}}}d\overline{z_1}, & \frac\dy{\dy \overline{z_2}} & = \frac{-\overline{P_{z_2}}}{\overline{P_{z_1}}} \frac\dy{\dy \overline{z_1}}.
\end{align*}
Using the above and an equation from the mentioned post, for $e = \frac\dy{\dy z_1} + \frac\dy{\dy \overline {z_1}} + \frac\dy{\dy z_2} + \frac\dy{\dy \overline{z_2}}$, we get
\begin{align*}
\frac{d \gamma}{dt} & = \left(\overline\gamma_1'-\frac{P_{z_2}}{P_{z_1}}\overline \gamma_2'\right)\frac\dy{\dy z_1} + \left(\gamma_1' - \frac{\overline{P_{z_2}}}{\overline{P_{z_1}}}\gamma_2'\right)\frac\dy{\dy \overline{z_1}} \\
\left(\sum_{k,\ell=1}^2\chi_{k\ell}(\gamma)dz_k\wedge d\overline{z_\ell}\right)(e,e) & = 1+|\gamma_2|^2 + \frac{\overline{P_{z_1}}}{\overline{P_{z_2}}} \overline \gamma_1\gamma_2 + \frac{P_{z_1}}{P_{z_2}}\gamma_1\overline\gamma_2 + \left|\frac{P_{z_1}}{P_{z_2}}\right|^2 \left(1+|\gamma_1|^2\right) = 1 +\left|\frac{P_{z_1}}{P_{z_2}}\right|^2 + \left|\frac{P_{z_1}}{P_{z_2}}\gamma_1+\gamma_2\right|^2, \\
(dz_1\wedge d\overline{z_1})\left(\frac{d\gamma}{dt},I\frac{d\gamma}{dt}\right) & = \det
\begin{bmatrix}
\overline\gamma_1'-\frac{P_{z_2}}{P_{z_1}}\overline \gamma_2' & i\left(\overline\gamma_1'-\frac{P_{z_2}}{P_{z_1}}\overline \gamma_2'\right) \\[5pt]
\gamma_1' - \frac{\overline{P_{z_2}}}{\overline{P_{z_1}}}\gamma_2' & -i\left(\gamma_1' - \frac{\overline{P_{z_2}}}{\overline{P_{z_1}}}\gamma_2'\right)
\end{bmatrix} = -2i \left|\gamma_1' - \frac{\overline{P_{z_2}}}{\overline{P_{z_1}}}\gamma_2'\right|^2.
\end{align*}
Hence
\[
g\left(\frac{d\gamma}{dt},\frac{d\gamma}{dt}\right) = \frac{\left(1 +\left|\frac{P_{z_1}}{P_{z_2}}\right|^2 + \left|\frac{P_{z_1}}{P_{z_2}}\gamma_1+\gamma_2\right|^2\right)\left|\gamma_1' - \frac{\overline{P_{z_2}}}{\overline{P_{z_1}}}\gamma_2'\right|^2}{\pi\left(1+|\gamma_1|^2+|\gamma_2|^2\right)^2}.
\]

Now we move to $\P^n$, and consider $X\subset \P^n$ a complete intersection of codimension $r$, or the zero set of polynomials $P_1=0,\dots,P_r=0$. Expressing some covectors in terms of others reduces the number of determinants we calculated above from $2n$ to $2(n-r)$. Then
\begin{align*}
P_{1,z_1}dz_1 + \cdots + P_{1,z_n}dz_n & = 0, & dz_n & = c_{n,1}dz_1 + \cdots + c_{n,n-r}dz_{n-r}, \\
& \ \ \vdots & & \ \ \vdots \\
P_{r,z_1}dz_1 + \cdots + P_{r,z_n}dz_n & = 0, & dz_{n-r+1} & = c_{n-r+1,1}dz_1 + \cdots + c_{n-r+1,n-r}dz_{n-r},
\end{align*}
for the $c_{i,j}$ some combinations of the $P_{k,z_\ell}$. By orthonormality of the basis vectors, and assuming that the $c_{i,j}$ are all non-zero, we find
\[
\frac\dy{\dy z_i} = \sum_{j=1}^{n-r} \frac1{(n-r)c_{i,j}}\frac\dy{\dy z_j},\hspace{2cm}
\frac\dy{\dy \overline{z_i}} = \sum_{j=1}^{n-r} \frac1{(n-r)\overline{c_{i,j}}}\frac\dy{\dy \overline{z_j}},
\]
for all integers $n-r<i\leqslant n$. This allows us to rewrite the path derivative as
\begin{align*}
\frac{d\gamma}{dt} & = \sum_{i=1}^n \overline \gamma_i'\frac\dy{\dy z_i} +\gamma_i'\frac\dy{\dy \overline{z_i}} \\
& = \sum_{i=1}^{n-r} \left(\overline \gamma_i'\frac\dy{\dy z_i} +\gamma_i'\frac\dy{\dy \overline{z_i}}\right) +\sum_{i=n-r+1}^n \left(\sum_{j=1}^{n-r} \frac{\overline \gamma_i'}{(n-r)c_{i,j}}\frac\dy{\dy z_j} + \sum_{j=1}^{n-r} \frac{\gamma_i'}{(n-r)\overline{c_{i,j}}}\frac\dy{\dy \overline{z_j}}\right) \\
& = \sum_{i=1}^{n-r}\left(\overline\gamma_i' + \sum_{j=n-r+1}^n \frac{\overline\gamma_j'}{(n-r)c_{j,i}}\right)\frac\dy{\dy z_i} + \left(\gamma_i'+\sum_{j=n-r+1}^n \frac{\gamma_j'}{(n-r)\overline{c_{j,i}}}\right)\frac\dy{\dy \overline{z_i}}.
\end{align*}

In the case of a curve in $\P^n$, when $r=n-1$, let $c_{1,1}=1$ and  $e = \frac\dy{\dy z_1} + \frac\dy{\dy \overline {z_1}} + \cdots + \frac\dy{\dy z_n} + \frac\dy{\dy \overline{z_n}}$ to get
\begin{align*}
 \frac{d\gamma}{dt} & = \left(\sum_{j=1}^n \frac{\overline\gamma_j'}{c_{j1}}\right)\frac\dy{\dy z_1} + \left(\sum_{j=1}^n \frac{\gamma_j'}{\overline{c_{j1}}}\right)\frac\dy{\dy \overline{z_1}},\\
 \left(\sum_{k,\ell=1}^n\chi_{k\ell}(\gamma)dz_k\wedge d\overline{z_\ell}\right)(e,e) & = \sum_{k,\ell=1}^n \left(1+\sum_{i=1}^n |\gamma_i|^2\right)\delta_{k\ell} - \overline{\gamma_kc_{\ell1}}\gamma_\ell c_{k1}, \\
(dz_1\wedge d\overline{z_1})\left(\frac{d\gamma}{dt},I\frac{d\gamma}{dt}\right) & = \det
\begin{bmatrix}
\sum_{j=1}^n \frac{\overline\gamma_j'}{c_{j1}} & i \sum_{j=1}^n \frac{\overline\gamma_j'}{c_{j1}} \\[5pt]
\sum_{j=1}^n \frac{\gamma_j'}{\overline{c_{j1}}} & -i\sum_{j=1}^n \frac{\gamma_j'}{\overline{c_{j1}}}
\end{bmatrix} = -2i \left|\sum_{j=1}^n \frac{\gamma_j'}{\overline{c_{j1}}}\right|^2.
\end{align*}
Hence
\[
g\left(\frac{d\gamma}{dt},\frac{d\gamma}{dt}\right) = \frac{\left(\sum_{k,\ell=1}^n \left(1+\sum_{i=1}^n |\gamma_i|^2\right)\delta_{k\ell} - \overline{\gamma_kc_{\ell1}}\gamma_\ell c_{k1}\right)\left|\sum_{j=1}^n \frac{\gamma_j'}{\overline{c_{j1}}}\right|^2}{\pi \left(1+\sum_{i=1}^n |\gamma_i|^2\right)^2}.
\]
The terms $\overline{\gamma_kc_{\ell1}}\gamma_\ell c_{k1}$ may be rearranged into terms $|\gamma_kc_{\ell1}-\gamma_\ell c_{k1}|^2$, but it does not provide any enlightening results, similarly to the rest of this post.

Tuesday, June 28, 2016

The conditioning number of a projective curve

Let $C$ be a smooth algebraic curve in $\P^2$. That is, for some homogeneous $f\in \C[x_0,x_1,x_2]$ we let $C = \{x\in \P^2\ :\ f(x)=0\}$. Describe $C$ as a manifold via the usual open sets $U_i = \{x\in \P^2\ :\ x_i\neq 0\}$ and charts
\[
\begin{array}{r c l}
\varphi_0\ :\ U_0 & \to & \C^2, \\\
[x_0:x_1:x_2] & \mapsto & (\frac{x_1}{x_0},\frac{x_2}{x_0}),
\end{array}
\hspace{1cm}
\begin{array}{r c l}
\varphi_1\ :\ U_1 & \to & \C^2, \\\
[x_0:x_1:x_2] & \mapsto & (\frac{x_0}{x_1},\frac{x_2}{x_1}),
\end{array}
\hspace{1cm}
\begin{array}{r c l}
\varphi_2\ :\ U_2 & \to & \C^2, \\\
[x_0:x_1:x_2] & \mapsto & (\frac{x_0}{x_2},\frac{x_1}{x_2}).
\end{array}
\]
Let $w=[w_0:w_1:w_2]\in \P^2$ for which $f(w)=0$. The Jacobian of $C$ at $w$ is then
\[
J_w = \left[
\left.\frac{\dy f}{\dy x_0}\right|_w \ :\  \left.\frac{\dy f}{\dy x_1}\right|_w \ :\  \left.\frac{\dy f}{\dy x_2}\right|_w
\right] \in \P^2.
\]
Assume that $\left.\frac{\dy f}{\dy x_0}\right|_w\neq 0$ and pass to $\varphi_0(U_0)$ to get the Jacobian to be
\[
J_w^0 = \left(
\frac{\dy f/\dy x_1|_w}{\dy f/\dy x_0|_w}\ ,\ \frac{\dy f/\dy x_2|_w}{\dy f/\dy x_0|_w}\right)  \in \C^2.
\]
Assume that $w_0\neq 0$, so the tangent line to $\varphi_0(C)\subset \C^2$ at $\varphi_0(w)=(w_1/w_0,w_2/w_0)$ is
\[
T_{\varphi_0(w)}= \{\varphi_0(w)+tJ_w^0\ :\ t\in \C\}\subset \C^2.
\]
A vector orthogonal to the Jacobian $J_w^0$ is
\[
\bar J_w^0 = \left(-\frac{\dy f/\dy x_2|_w}{\dy f/\dy x_0|_w}\ ,\ \frac{\dy f/\dy x_1|_w}{\dy f/\dy x_0|_w}\right) \in \C^2,
\]
so the space space normal to $T_{\varphi_0(w)}$ is given by
\[
T_{\varphi_0(w)}^\perp = \{\varphi_0(w)+t\bar J_w^0\ :\ t\in \C\}\subset \C^2.
\]

Example: Let $C\subset \P^2$ be the zero locus of $f(x_0,x_1,x_2) = x_0^2+x_1x_2-x_1x_0$. The Jacobian is $J = [2x_0-x_1:x_2-x_0:x_1]$, and as $J=0$ implies $x_0=x_1=x_2=0$, but $0\not\in\P^2$, the curve $C$ is smooth. Consider two points $w=[1:1:0],z=[2:1:-2]\in C$, at which the Jacobian is
\[
J_w = [1:-1:1]
\hspace{1cm},\hspace{1cm}
J_z = [3:-4:1].
\]
Both $w_0$ and $z_0$ are non-zero, with $\varphi_0(w)=(1,0)$ and $\varphi_0(z)=(1/2,-1)$, giving the tangent and normal spaces to be
\begin{align*}
T_{(1,0)} & = \{(1,0)+t(-1,1)\ :\ t\in \C\}, & T_{(1/2,-1)} & = \{(1/2,-1)+s(-4/3,1/3)\ :\ s\in \C\}, \\
T^\perp_{(1,0)} & = \{(1,0)+t(-1,-1)\ :\ t\in \C\}, & T_{(1/2,-1)}^\perp & = \{(1/2,-1)+s(-1/3,-4/3)\ :\ s\in \C\}.
\end{align*}
The two normal spaces intersect at $(t,s)=(1/3,-1/2)$ at distances of $1/3\cdot ||(-1,-1)|| = \sqrt 2/3\approx 0.471$ and $1/2\cdot||(-1/3,-4/3)|| = \sqrt{17}/3\approx 1.374$ from the points $\varphi_0(w),\varphi_0(z)$, respectively. Hence the conditioning number of $C$ is at most $\sqrt 2/3$.

Given a smooth projective curve and a finite set of points, this Sage code will calculate the conditioning number from that collection of points.