Showing posts with label fibration. Show all posts
Showing posts with label fibration. Show all posts

Thursday, August 31, 2017

Exit paths, part 1

This post is meant to set up all the necessary ideas to define the category of exit paths.

Preliminaries

 Let $X$ be a topological space and $C$ a category. Recall the following terms:
  • $\Delta$: The category whose objects are finite ordered sets $[n]=(1,\dots,n)$ and whose morphisms are non-decreasing maps. It has several full subcategories, including
    • $\Delta_s$, comprising the same objects of $\Delta$ and only injective morphisms, and
    • $\Delta_{\leqslant n}$, comprising only the objects $[0],\dots,[n]$ with the same morphisms.
  • equalizer: An object $E$ and a universal map $e:E\to X$, with respect to two maps $f,g:X\to Y$. It is universal in the sense that all maps into $X$ whose compositions with $f,g$ are equal factor through $e$. Equalizers and coequalizers are described by the diagram below, with universality given by existence of the dotted maps.
  • fibered product or pullback: The universal object $X\times_Z Y$ with maps to $X$ and $Y$, with respect to maps $X\to Z$ and $Y\to Z$.
  • fully faithful: A functor $F$ whose morphism restriction $\Hom(X,Y)\to \Hom(F(X),F(Y))$ is surjective (full) and injective (faithful).
  • locally constant sheaf: A sheaf $\mathcal F$ over $X$ for which every $x\in X$ has a neighborhood $U$ such that $\mathcal F|_U$ is a constant sheaf. For example, constructible sheaves are locally constant on every stratum. 
  • simplicial object: A contravariant functor from $\Delta$ to any other category. When the target category is $\text{Set}$, it is called a simplicial set. They may also be viewed as a collection $S = \{S_n\}_{\geqslant 0}$ for $S_n=S([n])$ the value of the functor on each $[n]$. Simplicial sets come with two natural maps:
    • face maps $d_i:S_n\to S_{n-1}$ induced by the map $[n-1]\to [n]$ which skips the $i$th piece, and
    • degeneracy maps $s_i:S_n\to S_{n+1}$ induced by the map $[n+1]\to[n]$ which repeats the $i$th piece.
  • stratification: A property of a cover $\{U_i\}$ of $X$ for which consecutive differences $U_{i+1}\setminus U_i$ have ``nicer" properties than all of $X$. For example, $E_i\to U_{i+1}\setminus U_i$ is a rank $i$ vector bundle, but there is no vector bundle $E\to X$ that restricts to every $E_i$.

Now we get into new territory.

Definition: The nerve of a category $C$ is the collection $N(C) = \{N(C)_n = Fun([n],C)\}_{n\geqslant 0}$, where $[n]$ is considered as a category with objects $0,\dots,n$ and a single morphism in $\Hom_{[n]}(s,t)$ iff $s\leqslant t$.

Note that the nerve of $C$ is a simplicial set, as it is a functor from $\Delta^{op}\to Fun(\Delta,C)$. Moreover, the pieces $N(C)_0$ are the objects of $C$ and $N(C)_1$ are the morphisms of $C$, so all the information about $C$ is contained in its nerve. There is more in the higher pieces $N(C)_n$, so the nerve (and simplicial sets in general) may be viewed as a generalization of a category.

Kan structures


Let $\text{sSet}$ be the category of simplicial sets. We may consider $\Delta^n = \Hom_\Delta(-,[n])$ as a contravariant functor $\Delta\to \text{Set}$, so it is an object of $\text{sSet}$.

Definition: Fix $n\geqslant 0$ and choose $0\leqslant i\leqslant n$. Then the $i$th $n$-horn of a simplicial set is the functor $\Lambda^n_i\subset \Delta^n$ generated by all the faces $\Delta^n(d_j)$, for $j\neq i$.

We purposefully do not describe what "$\subset$" or "generated by" mean for functors, hoping that intuition fills in the gaps. In some sense the horn feels like a partially defined functor (though it is a true simplicial set), well described by diagrams, for instance with $n=2$ and $i=1$ we have

Definition: A simplicial set $S$ is a Kan complex whenever every map $f:\Lambda^n_i\to S$ factors through $\Delta^n$. That is, when there exists a

The map $\iota$ is the inclusion. Moreover, $S$ is an $\infty$-category, or quasi-category, if the extending map $f'$ is unique.

Example: Some basic examples of $\infty$-categories, for $X$ a topological space, are
  • $Sing(X)$, made up of pieces $Sing(X)_n = \Hom(\Delta^n,X)$, and
  • $LCS(X)$, the category of locally constant sheaves over $X$. Here $LCS(X)_n$ over an object $A$, whose objects are $B\to A$ and morphisms are the appropriate commutative diagrams

Definition: A morphism $p\in \Hom_{\text{sSet}}(S,T)$ is a Kan fibration if for every commutative diagram (of solid arrows)

the dotted arrow exists, making the new diagram commute.

Definition: Let $C,D,A$ be categories with functors $F:C\to D$ and $G:C\to A$.
  • The left Kan extension of $F$ along $G$ is a functor $A\xrightarrow L D$ and a universal natural transformation $F\stackrel \lambda \rightsquigarrow L\circ G$.
  • The right Kan extension of $F$ along $G$ is a functor $A\xrightarrow R D$ and a universal natural transformation $R\circ G \stackrel \rho\rightsquigarrow F$.

Exit paths


The setting for this section is constructible sheaves over a topological space $X$. We begin with a slightly more technical definition of a stratification.

Definition: Let $(A,\leqslant)$ be a partially ordered set with the upset topology. That is, if $x\in U$ is open and $x\leqslant y$, then $y\in A$. An $A$-stratification of $X$ is a continuous function $f:X\to A$.

We now begin with a Treumann's definition of an exit path, combined with Lurie's stratified setting.

Definition: An exit path in an $A$-stratified space $X$ is a continuous map $\gamma:[0,1]\to X$ for which there exists a pair of chains $a_1\leqslant \cdots \leqslant a_n$ in $A$ and $0=t_0\leqslant \cdots \leqslant t_n=1$ in $[0,1]$ such that $f(\gamma(t))=a_i$ whenever $t\in (t_{i-1},t_i]$.

This really is a path, and so gives good intuition for what is happening. Recall that the geometric realization of the functor $\Delta^n$ is $|\Delta^n| = \{(t_0,\dots,t_n)\in \R^{n+1}\ :\ t_0+\cdots+t_n=1\}$. Oserving that $[0,1]\cong|\Delta^1|$, Lurie's definition of an exit path is more general by instead considering maps from $|\Delta^n|$.

Definition: The category of exit paths in an $A$-stratified space $X$ is the simplicial subset $Sing^A(X)\subset Sing(X)$ consisting of those simplices $\gamma:|\Delta^n|\to X$ for which there exists a chain $a_0\leqslant \cdots \leqslant a_n$ in $A$ such that $f(\gamma(t_0,\dots,t_i,0,\dots,0))=a_i$ for $t_i\neq 0$.

Example: As with all new ideas, it is useful to have an example. Consider the space $X=\Ran^{\leqslant 2}(M)\times \R_{\geqslant 0}$ of a closed manifold $M$ (see post "A constructible sheaf over the Ran space" 2017-06-24 for more). With the poset $(A,\leqslant)$ being $(a\leqslant b\leqslant c)$ and stratifying map
\[
\begin{array}{r c l}
f\ :\ X & \to & A, \\
(P,t) & \mapsto & \begin{cases}
a & \text{ if } P\in \Ran^1(M), \\
b & \text{ if } P\in \Ran^2(M), t\leqslant d(P_1,P_2), \\
c & \text{ else,}
\end{cases}
\end{array}
\]
we can make a continuous map $\gamma:\Delta^3\to X$ by
\[
\begin{array}{r c l}
(1,0,0) & \mapsto & (P\in \Ran^1(M),0), \\
(t_0,t_1\neq 0,0) & \mapsto & (P\in \Ran^2(M), d(P_1,P_2)), \\
(t_0,t_1,t_2\neq 0) & \mapsto & (P\in \Ran^2(M), t>d(P_1,P_2)).
\end{array}
\]
Then $f(\gamma(t_0\neq 0,0,0))=a$, and $f(\gamma(t_0,t_1\neq 0,0))=b$, and $f(\gamma(t_0,t_1,t_2\neq 0))=c$, as desired. The embedding of such a simplex $\gamma$ is described by the diagram below.


Both the image of $(1,0,0)$ and the 1-simplex from $(1,0,0)$ to $(0,1,0)$ lie in the singularity set of $\Ran^{\leqslant 2}(M)\times \R_{\geqslant 0}$, which is pairs $(P,t)$ where $t=d(P_i,P_j)$ for some $i,j$. The idea that the simplex "exits" a stratum is hopefully made clear by this image.

References: Lurie (Higher algebra, Appendix A), Lurie (What is... an $\infty$-category?), Groth (A short course on $\infty$-categories, Section 1), Joyal (Quasi-categories and Kan complexes), Goerss and Jardine (Simplicial homotopy theory, Chapter 1), Treumann (Exit paths and constructible stacks)

Sunday, July 31, 2016

(Co)fibrations, suspensions, and loop spaces

 Seminar topic

Recall the exponential object $Z^Y$, which, in the category of topological spaces, is the set of all continuous functions $Y\to Z$. In general, the definition involves a commuting diagram and gives an isomorphism $\Hom(X\times Y,Z)\cong \Hom(X,Z^Y)$. The subspace $F(Y,Z)$ of $Z^Y$ consists of based functions $Y\to Z$.

Definition: Let $F,E,B,X$ be topological spaces. A map $i:F\to E$ is a cofibration if for every map $f:E\to X$ and every homotopy $h:F\times I\to X$, there exists a homotopy $\tilde h:E\times I\to X$ (extending $h$) making either of the equivalent diagrams below commute.

The horizontal maps on the left are the natural inclusion maps $x\mapsto (x,0)$ and the map on the right is the natural evaluation map $\varphi \mapsto \varphi(0)$. Similarly, a map $p:E\to B$ is a fibration if for every map $g:X\to E$ and every homotopy $h:X\times I\to B$, there exists a homotopy $\tilde h:X\times I\to E$ (lifting $h$) making either of the equivalent diagrams below commute.

The horizontal maps on the right are the natural evaluation maps and the map on the right is the natural inclusion map.

Instead of this terminology, often we say the pair $(F,E)$ has the homotopy extension property and the pair $(E,B)$ has the homotopy lifting property. Now, let let $(X,x)$ be a pointed topological space.

Definition: The (reduced) suspension $\Sigma X$ of $X$ is
\[
\Sigma X := X\times I/X\times \{0\} \cup X\times \{1\} \cup \{x\}\times I.
\] 
The unreduced suspension $SX$ of $X$ is
\[
S X := X\times I/X\times \{0\} \cup X\times \{1\}.
\]
The loop space $\Omega X$ of $X$ is
\[
\Omega X := F(S^1,X).
\]
Remark: If $X$ is well-pointed (the inclusion $i:\{x\}\hookrightarrow X$ is a cofibration), then the natural quotient map $SX\to \Sigma X$ is a homotopy equivalence. Moreover, there is an adjunction $F(\Sigma X,Y)\cong F(X,\Omega Y)$. In the fundamental group this gives the adjunction
\[
[\Sigma X,Y]\cong [X,\Omega Y],
\]
where $[A,B]$ is the set of based homotopy classes of maps $A\to B$.

References: May (A concise course in algebraic toplogy, Chapters 6, 7, 8), Aguilar, Gitler, and Prieto (Algebraic topology from a homotopical viewpoint, Chapter 2.10)