Showing posts with label entry path. Show all posts
Showing posts with label entry path. Show all posts

Sunday, April 22, 2018

A functor from entry paths to the nerve of simplicial complexes

Fix $n\in \Z_{>0}$ and let $X=\Ran^{\leqslant n}(M)\times \R_{>0}$ for $M$ a compact, connected PL manifold embedded in $\R^N$. Take $\widetilde h\colon X\to (B,\leqslant)$ the conical stratifying map from a previous post (``Conical stratifications via semialgebraic sets," 2018-04-16) compatible with the natural stratification $h\colon X\to SC$. The goal of this post is to construct a functor $F\colon \Sing_B(X) \to N(SC)$ from the $\infty$-category of entry paths that encodes the structure of $X$.

Recall that a simplicial set is a functor, an element of $\text{Fun}(\Delta^{op},\Set)$. A simplicial set $S$ is defined by its collection of $n$-simplices $S_n$, its face maps $s_i:S_{n-1}\to S_n$, and degeneracy maps $d_i:S_{n+1}\to S_k$, for all $i=0,\dots,n$. For the first simplicial set of interest in this post, we have
\begin{align*}
\Sing_B(X)_n & = \Hom_{\Top}^B(|\Delta^n|,X), \\
\left(s_i\colon [n]\to [n-1]\right) & \mapsto \left( \begin{array}{c}
\left(|\Delta^{n-1}|\to X \right) \mapsto \left(|\Delta^n|\to X\right) \\
\text{collapses $i$th with $(i+1)$th vertex, then maps as source}
\end{array}\right)\\
\left(d_i\colon [n]\to [n+1]\right) & \mapsto  \left(\begin{array}{c}
\left(|\Delta^{n+1}|\to X \right) \mapsto \left(|\Delta^n|\to X\right) \\
\text{maps as $i$th face of source map}
\end{array}\right)
\end{align*}
We write $\Hom^B_{\Top}$ for the subset of $\Hom_{\Top}$ that respects the stratification $B$ in the context of entry paths. For the second simplicial set, the nerve, we have
\begin{align*}
N(SC)_n & = \{(S_0\tov{f_1} \cdots \tov{f_n} S_n)\ :\ S_i\in SC,\ f_i\ \text{are simplicial maps}\}, \\
\left(s_i\colon [n]\to [n-1]\right) & \mapsto \left( \left(S_0\tov{f_1}\cdots \tov{f_{n-1}} S_{n-1} \right) \mapsto \left(S_0\tov{f_1} \cdots\tov{f_i} S_i \tov{\id} S_i\tov{f_{i+1}} \cdots \tov{f_{n-1}} S_{n-1}\right)\right),\\
\left(d_i\colon [n]\to [n+1]\right) & \mapsto \left(\begin{array}{r l}
i=0: & \left(S_0\cdots S_{n+1} \right) \mapsto \left(S_1\tov{f_2}\cdots \tov{f_{n+1}} S_{n+1} \right) \\
0<i<n: & \left(S_0 \cdots S_{n+1} \right) \mapsto \left(S_0\tov{f_1} \cdots\tov{f_{i-1}} S_{i-1} \tov{f_{i+1}\circ f_i} S_{i+1} \tov{f_{i+2}} \cdots \tov{f_{n+1}} S_{n+1}\right) \\
i=n: & \left(S_0 \cdots  S_{n+1} \right) \mapsto \left(S_0\tov{f_1}\cdots \tov{f_n} S_n \right)
\end{array} \right). 
\end{align*}
 Define $F$ on $k$-simplices as \[ F\left(\gamma\colon |\Delta^k|\to \Ran^{\leqslant n}(M)\times \R_{>0}\right) = \left(\widetilde h(\gamma(1,0,\dots,0)) \tov{\left(\widetilde h\circ \gamma \circ s_k\circ \cdots \circ s_2\right)\left( |\Delta^1|\right)} \cdots \tov{\left(\widetilde h\circ \gamma \circ s_{k-2}\circ \cdots \circ s_0\right)\left(|\Delta^1|\right)} \widetilde h(\gamma(0,\dots,0,1))\right). \] A morphism in $\Sing_B(X)$ is a composition of face maps $s_i$ and degeneracy maps $d_i$, so $F$ must satisfy the commutative diagrams

for all $s_i$, $d_i$. Since the maps are unwieldy when in coordinates, we opt for heuristic arguments, neglecting to trace out notation-heavy diagrams.

Commutativity of the diagram on the left is immediate, as considering a simplex $|\Delta^{n-1}|$ as the $i$th face of a larger simplex $|\Delta^n|$ is the same as adding a step that is the identity map in the Hamiltonian path of vertices of $|\Delta^{n-1}|$. Similarly, observing that the image of the shortest path $v_{i-1}\to v_i\to v_{i+1}$ in $|\Delta^{n+1}|$, for $v_i = (0,\dots,0,1,0,\dots,0)$ the $i$th standard basis vector, induced by an element $\gamma\colon |\Delta^{n+1}|\to X$ in $\Sing_B(X)_{n+1}$, is homotopic to the image of the shortest path $v_{i-1} \to v_{i+1}$ shows that the diagram on the right commutes. Since $F$ is a natural transformation between the two functors $\Sing_B(X)$ and $N(SC)$, it is a functor on the functors as simplicial sets.

Remark: The particular choice of $X$ did not seem to play a large role in the arguments above. However, the stratifying map $\widetilde h\colon X\to B$ has image sitting inside $SC$, the nerve of which is the target of $F$, and every morphism in $\Sing_B(X)$ can be interpreted as a relation in $B\subseteq SC$ (both were necessary for the commutativity of the diagrams). Hence it is not unreasonable to expect a similar functor $\Sing_A(X)\to N(A')$ may exist for a stratified space $X\to A\subseteq A'$.

Friday, April 20, 2018

Exit paths and entry paths through $\infty$-categories

Let $X$ be a topological space, $(A,\leqslant)$ a poset, and $f: X\to (A,\leqslant)$ a continuous map.

Definition: An exit path in an $A$-stratified space $X$ is a continuous map $\sigma: |\Delta^n|\to X$ for which there exists a chain $a_0\leqslant \cdots \leqslant a_n$ in $A$ such that $f(\sigma(t_0,\dots,t_i,0,\dots,0))=a_i$ for $t_i\neq 0$. An entry path is a continuous map $\tau: |\Delta^n|\to X$ for which there exists a chain $b_0\leqslant \cdots \leqslant b_n$ in $A$ such that $f(\tau(0,\dots,0,t_i,\dots,t_n))=b_i$ for $t_i\neq 0$.

Up to reordering of vertices of $\Delta^n$ and induced reordering of the realization $|\Delta^n|$, an exit path is the same as an entry path. The next example describes this equivalence.

Example: The standard 2-simplex $|\Delta^2|$ is uniquely an exit path and an entry path with a chain of 3 distinct elements, stratfied in the ways described below.
Recall the following algebraic constructions, through Joyal's quasi-category model:
  • A simplicial set is a functor $\Delta^{op}\to \Set$.
  • A Kan complex is a simplicial set satisfying the inner horn condition for all $0\leqslant k\leqslant n$. That is, the $k$th $n$-horn lifts (can be filled in) to a map on $\Delta^n$.
  • An $\infty$-category is a simplicial set satisfying the inner horn condition for all $0<k<n$.
Moreover, if the lift is unique, then the Kan complex is the nerve of some category. Recall also the category $\Sing(X) = \{$continuous $\sigma: |\Delta^n|\to X\}$, which can be combined with the stratification $f: X\to A$ of $X$

Remark: The subcategory $\Sing^A(X)$ of exit paths and the subcategory $\Sing_A(X)$ of entry paths are full subcategories of $\Sing(X)$, with $(\Sing^A(X))^{op} = \Sing_A(X)$. If the stratification is conical, then these two categories are $\infty$-categories.
Recall the nerve construction of a category. Here we are interested in the nerve of the category $SC$ of simplicial complexes, so $N(SC)_n = \{$sequences of $n$ composable simplicial maps$\}$. Recall the $k$th $n$-horns, which are compatible diagrams of elements of $N(SC)_n$. In general, they are colimits of a diagram in the category $\Delta$. That is, \[ \Lambda^n_k := \colim \left(\bigsqcup_{0\leqslant i<j\leqslant n} \Delta^{n-2} \rightrightarrows \bigsqcup_{0\leqslant i\leqslant n \atop i\neq k} \Delta^{n-1}\right). \] Example: The images of the 3 different types of 2-horns and 4 different types of 3-horns in $SC$ are given below. Note that they are not unique, and depend on the choice of simplices $S_i$ (equivalently, on the choice of functor $\Delta^{op}\to SC$).
For example, the 0th 2-horn $\Lambda^2_0$ can be filled in if there exists a simplicial map $h: S_1\to S_2$ in $SC$ (that is, an element of $N(SC)_1$) such that $h\circ f = g$. Similarly, the 1st 3-horn $\Lambda^3_1$ can be filled in if there exists a functor $F: [0<1<2]\to SC$ for which $F(0<1)=f_{02}$, $F(0<2)=f_{03}$, and $F(1<2)=f_{23}$ (equivalently, a compatible collection of elements of $N(SC)_2$).

Definition: Let $A,B$ be $\infty$-categories. A functor $F: A\to B$ is a morphism of the simplicial sets $A,B$. That is, $F:A\to B$ is a natural transformation for $A,B\in \text{Fun}(\Delta^{op},\Set)$.

A functor of simplicial sets of a particular type can be identified with a functor of 1-categories. Recall the nerve of a 1-category, which turns it into an $\infty$-category. This construction has a left adjoint.

Definition: Let $\mathcal C$ be an $\infty$-category. The homotopy category $h\mathcal C$ of $\mathcal C$ has objects $\mathcal C_0$ and morphisms $\Hom_{h\mathcal C}(X,Y) = \pi_0(\text{Map}_{\mathcal C}(X,Y))$.

By Lurie, $h$ is left-adjoint to $N$. That is, $h : \sSet \rightleftarrows \text{Cat} : N$, or $\text{Map}_{\sSet}(\mathcal C,N(\mathcal D)) \cong \text{Map}_{\text{Cat}}(h\mathcal C, \mathcal D)$, for any $\infty$-category $\mathcal C$ and any 1-category $\mathcal D$. Our next goal is to describe a functor $\Sing_A(X)\to N(SC)$, maybe through this adjunction, where $SC$ is the 1-category of simplicial complexes and simplicial maps.

References: Lurie (Higher topos theory, Sections 1.1.3 and 1.2.3), Lurie (Higher algebra, Appendix A.6), Goerss and Jardine (Simplicial homotopy theory, Section I.3), Joyal (Quasi-categories and Kan complexes)