Showing posts with label metric. Show all posts
Showing posts with label metric. Show all posts

Wednesday, March 15, 2017

Lengths of paths on projective varieties

This post contains calculations that continue on the ideas from the previous post "Fubini--Study metric," 2017-03-05. First we suppose that $\gamma$ lies on a curve $C\subset \P^2$, with the curve defined as the zero locus of a polynomial $P$. Taking the derivative of $P$ on $\C^2$ gives $P_{z_1}dz_1 + P_{z_2}dz_2=0$, which can be manipulated to give
\begin{align*}
dz_2 & = \frac{-P_{z_1}}{P_{z_2}}dz_1, & \frac\dy{\dy z_2} & = \frac{-P_{z_2}}{P_{z_1}} \frac\dy{\dy z_1},\\
d\overline{z_2} & = \frac{-\overline{P_{z_1}}}{\overline{P_{z_2}}}d\overline{z_1}, & \frac\dy{\dy \overline{z_2}} & = \frac{-\overline{P_{z_2}}}{\overline{P_{z_1}}} \frac\dy{\dy \overline{z_1}}.
\end{align*}
Using the above and an equation from the mentioned post, for $e = \frac\dy{\dy z_1} + \frac\dy{\dy \overline {z_1}} + \frac\dy{\dy z_2} + \frac\dy{\dy \overline{z_2}}$, we get
\begin{align*}
\frac{d \gamma}{dt} & = \left(\overline\gamma_1'-\frac{P_{z_2}}{P_{z_1}}\overline \gamma_2'\right)\frac\dy{\dy z_1} + \left(\gamma_1' - \frac{\overline{P_{z_2}}}{\overline{P_{z_1}}}\gamma_2'\right)\frac\dy{\dy \overline{z_1}} \\
\left(\sum_{k,\ell=1}^2\chi_{k\ell}(\gamma)dz_k\wedge d\overline{z_\ell}\right)(e,e) & = 1+|\gamma_2|^2 + \frac{\overline{P_{z_1}}}{\overline{P_{z_2}}} \overline \gamma_1\gamma_2 + \frac{P_{z_1}}{P_{z_2}}\gamma_1\overline\gamma_2 + \left|\frac{P_{z_1}}{P_{z_2}}\right|^2 \left(1+|\gamma_1|^2\right) = 1 +\left|\frac{P_{z_1}}{P_{z_2}}\right|^2 + \left|\frac{P_{z_1}}{P_{z_2}}\gamma_1+\gamma_2\right|^2, \\
(dz_1\wedge d\overline{z_1})\left(\frac{d\gamma}{dt},I\frac{d\gamma}{dt}\right) & = \det
\begin{bmatrix}
\overline\gamma_1'-\frac{P_{z_2}}{P_{z_1}}\overline \gamma_2' & i\left(\overline\gamma_1'-\frac{P_{z_2}}{P_{z_1}}\overline \gamma_2'\right) \\[5pt]
\gamma_1' - \frac{\overline{P_{z_2}}}{\overline{P_{z_1}}}\gamma_2' & -i\left(\gamma_1' - \frac{\overline{P_{z_2}}}{\overline{P_{z_1}}}\gamma_2'\right)
\end{bmatrix} = -2i \left|\gamma_1' - \frac{\overline{P_{z_2}}}{\overline{P_{z_1}}}\gamma_2'\right|^2.
\end{align*}
Hence
\[
g\left(\frac{d\gamma}{dt},\frac{d\gamma}{dt}\right) = \frac{\left(1 +\left|\frac{P_{z_1}}{P_{z_2}}\right|^2 + \left|\frac{P_{z_1}}{P_{z_2}}\gamma_1+\gamma_2\right|^2\right)\left|\gamma_1' - \frac{\overline{P_{z_2}}}{\overline{P_{z_1}}}\gamma_2'\right|^2}{\pi\left(1+|\gamma_1|^2+|\gamma_2|^2\right)^2}.
\]

Now we move to $\P^n$, and consider $X\subset \P^n$ a complete intersection of codimension $r$, or the zero set of polynomials $P_1=0,\dots,P_r=0$. Expressing some covectors in terms of others reduces the number of determinants we calculated above from $2n$ to $2(n-r)$. Then
\begin{align*}
P_{1,z_1}dz_1 + \cdots + P_{1,z_n}dz_n & = 0, & dz_n & = c_{n,1}dz_1 + \cdots + c_{n,n-r}dz_{n-r}, \\
& \ \ \vdots & & \ \ \vdots \\
P_{r,z_1}dz_1 + \cdots + P_{r,z_n}dz_n & = 0, & dz_{n-r+1} & = c_{n-r+1,1}dz_1 + \cdots + c_{n-r+1,n-r}dz_{n-r},
\end{align*}
for the $c_{i,j}$ some combinations of the $P_{k,z_\ell}$. By orthonormality of the basis vectors, and assuming that the $c_{i,j}$ are all non-zero, we find
\[
\frac\dy{\dy z_i} = \sum_{j=1}^{n-r} \frac1{(n-r)c_{i,j}}\frac\dy{\dy z_j},\hspace{2cm}
\frac\dy{\dy \overline{z_i}} = \sum_{j=1}^{n-r} \frac1{(n-r)\overline{c_{i,j}}}\frac\dy{\dy \overline{z_j}},
\]
for all integers $n-r<i\leqslant n$. This allows us to rewrite the path derivative as
\begin{align*}
\frac{d\gamma}{dt} & = \sum_{i=1}^n \overline \gamma_i'\frac\dy{\dy z_i} +\gamma_i'\frac\dy{\dy \overline{z_i}} \\
& = \sum_{i=1}^{n-r} \left(\overline \gamma_i'\frac\dy{\dy z_i} +\gamma_i'\frac\dy{\dy \overline{z_i}}\right) +\sum_{i=n-r+1}^n \left(\sum_{j=1}^{n-r} \frac{\overline \gamma_i'}{(n-r)c_{i,j}}\frac\dy{\dy z_j} + \sum_{j=1}^{n-r} \frac{\gamma_i'}{(n-r)\overline{c_{i,j}}}\frac\dy{\dy \overline{z_j}}\right) \\
& = \sum_{i=1}^{n-r}\left(\overline\gamma_i' + \sum_{j=n-r+1}^n \frac{\overline\gamma_j'}{(n-r)c_{j,i}}\right)\frac\dy{\dy z_i} + \left(\gamma_i'+\sum_{j=n-r+1}^n \frac{\gamma_j'}{(n-r)\overline{c_{j,i}}}\right)\frac\dy{\dy \overline{z_i}}.
\end{align*}

In the case of a curve in $\P^n$, when $r=n-1$, let $c_{1,1}=1$ and  $e = \frac\dy{\dy z_1} + \frac\dy{\dy \overline {z_1}} + \cdots + \frac\dy{\dy z_n} + \frac\dy{\dy \overline{z_n}}$ to get
\begin{align*}
 \frac{d\gamma}{dt} & = \left(\sum_{j=1}^n \frac{\overline\gamma_j'}{c_{j1}}\right)\frac\dy{\dy z_1} + \left(\sum_{j=1}^n \frac{\gamma_j'}{\overline{c_{j1}}}\right)\frac\dy{\dy \overline{z_1}},\\
 \left(\sum_{k,\ell=1}^n\chi_{k\ell}(\gamma)dz_k\wedge d\overline{z_\ell}\right)(e,e) & = \sum_{k,\ell=1}^n \left(1+\sum_{i=1}^n |\gamma_i|^2\right)\delta_{k\ell} - \overline{\gamma_kc_{\ell1}}\gamma_\ell c_{k1}, \\
(dz_1\wedge d\overline{z_1})\left(\frac{d\gamma}{dt},I\frac{d\gamma}{dt}\right) & = \det
\begin{bmatrix}
\sum_{j=1}^n \frac{\overline\gamma_j'}{c_{j1}} & i \sum_{j=1}^n \frac{\overline\gamma_j'}{c_{j1}} \\[5pt]
\sum_{j=1}^n \frac{\gamma_j'}{\overline{c_{j1}}} & -i\sum_{j=1}^n \frac{\gamma_j'}{\overline{c_{j1}}}
\end{bmatrix} = -2i \left|\sum_{j=1}^n \frac{\gamma_j'}{\overline{c_{j1}}}\right|^2.
\end{align*}
Hence
\[
g\left(\frac{d\gamma}{dt},\frac{d\gamma}{dt}\right) = \frac{\left(\sum_{k,\ell=1}^n \left(1+\sum_{i=1}^n |\gamma_i|^2\right)\delta_{k\ell} - \overline{\gamma_kc_{\ell1}}\gamma_\ell c_{k1}\right)\left|\sum_{j=1}^n \frac{\gamma_j'}{\overline{c_{j1}}}\right|^2}{\pi \left(1+\sum_{i=1}^n |\gamma_i|^2\right)^2}.
\]
The terms $\overline{\gamma_kc_{\ell1}}\gamma_\ell c_{k1}$ may be rearranged into terms $|\gamma_kc_{\ell1}-\gamma_\ell c_{k1}|^2$, but it does not provide any enlightening results, similarly to the rest of this post.

Sunday, March 5, 2017

The Fubini-Study metric and length in projective space

In this post we inspect how the Fubini-Study metric works and compute an example. Professor Mihai Paun for helpful discussions. Recall that from projective space $\P^n$ there are natural maps
\[
[x_0:x_1:\cdots:x_n]\tov{\vp_i}\left(\frac{x_0}{x_i},\dots,\widehat{\frac{x_i}{x_i}},\dots,\frac{x_n}{x_i}\right)
\]
for $i=0,\dots,n$. The maps land in $\C^n$ with coordinates $(z_1,z_2,\dots,z_n)$. We use $\vp_0$ as the main map, and conflate notation for objects in $\P^n$ and in $\C^n$ under $\vp_0$. Most of this post deals with the $n=2$ case.


The metric


The metric used on $\P^n$ is the Fubini-Study metric. Directly from Section 3.1 of Huybrechts, for $n=2$ the associated differential 2-form and its image in $\C^2$ are
\begin{align*}
\omega & = \frac i{2\pi}\partial \bar\partial \log\left(1+\left|\frac{x_1}{x_0}\right|^2+\left|\frac{x_2}{x_0}\right|^2\right), \\
\vp_0(\omega) & = \frac i{2\pi}\partial \bar\partial \log\left(1+\left|z_1\right|^2+\left|z_2\right|^2\right) \\
& =  \underbrace{\frac{i}{2\pi (1+|z_1|^2+|z_2|^2)^2}}_{\lambda_2}\sum_{k,\ell=1}^2\underbrace{(1+|z_1|^2+|z_2|^2)\delta_{k\ell} -\overline{z_k}z_\ell}_{\chi_{k\ell}}dz_k\wedge d\overline{z_\ell}. \hspace{1cm} (1)
\end{align*}
A Hermitian metric on a complex manifold $X$ may be described as a 2-tensor $h=g-i\omega$, where $g$ is a Riemannian metric (also a 2-tensor) on the underlying real manifold and $\omega$ is a Kahler form, a 2-form. As in Lemma 3.3 of Voisin, the relationship between $g$ and $\omega$ is given by
\[
g(u,v)=\omega(u,Iv)=\omega(Iu,v), \hspace{1cm} (2)
\]
where $I:T_xX\to T_xX$ is a tangent space endomorphism defined by
\[
\begin{array}{r c l}
I|_{T^{1,0}_xX} & = & i\cdot \id, \\
\frac{\dy}{\dy z_i} & \mapsto & i\frac{\dy}{\dy z_i},
\end{array}
\hspace{1cm}
\begin{array}{r c l}
I|_{T^{0,1}_xX} & = & -i\cdot \id, \\
\frac{\dy}{\dy \overline{z_i}} & \mapsto & -i\frac{\dy}{\dy \overline{z_i}},
\end{array}
\]
as in Proposition 1.3.1 of Huybrechts.

An application


Let $\gamma:[0,1]\to \C^2$ be a path, described as $\gamma(t)=(\gamma_1(t),\gamma_2(t))$. The derivative of $\gamma$ with respect to $t$, in the basis $\frac{\dy}{\dy z_1}$, $\frac{\dy}{\dy \overline{z_1}}$, $\frac{\dy}{\dy z_2}$, $\frac{\dy}{\dy \overline{z_2}}$ is given by
\[
\frac{d\gamma_1}{dt} = \frac{du_1}{dt}\frac\dy{\dy x_1} + i\frac{dv_1}{dt}\frac\dy{\dy y_1} = \frac{du_1}{dt}\left(\frac\dy{\dy \overline{z_1}}+\frac\dy{\dy z_1}\right) + i\frac{dv_1}{dt}\left(\frac\dy{\dy \overline{z_1}} -\frac{\dy}{\dy z_1}\right) = \underbrace{\left(\frac{du_1}{dt} + i\frac{dv_1}{dt}\right)}_{\gamma_1'}\frac\dy{\dy \overline {z_1}} + \underbrace{\left(\frac{du_1}{dt}-i\frac{dv_1}{dt}\right)}_{\overline \gamma_1'}\frac\dy{\dy z_1},\]
and analogously for $\gamma_2$. Hence
\[
\frac{d\gamma}{dt} =
\overline \gamma_1'\frac\dy{\dy z_1} + \gamma_1'\frac\dy{\dy \overline{z_1}} + \overline \gamma_2' \frac\dy{\dy z_2} + \gamma_2' \frac{\dy}{\dy \overline{z_2}}. \hspace{1cm} (3)
\]
The length of $\gamma$ is
\[
\int_0^1\sqrt{g\left(\frac{d\gamma}{dt},\frac{d\gamma}{dt}\right)}\ dt = \int_0^1\sqrt{\omega\left(\frac{d\gamma}{dt},I\frac{d\gamma}{dt}\right)}\ dt,
\]
using equation (2). Recall that the pairing of vectors with covectors is given by\[
\left(d\alpha_1\wedge \cdots \wedge d\alpha_n\right)\left(\frac\dy{\dy \beta_1},\dots,\frac\dy{\dy \beta_n}\right) = \det\begin{bmatrix}
d\alpha_1\frac\dy{\dy \beta_1} & d\alpha_1\frac{\dy}{\dy \beta_2} & \cdots & d\alpha_1\frac\dy{\dy \beta_n} \\
d\alpha_2\frac\dy{\dy \beta_1} & d\alpha_2\frac{\dy}{\dy \beta_2} & \cdots & d\alpha_2\frac\dy{\dy \beta_n} \\
\vdots & \vdots & \ddots & \vdots \\
d\alpha_n\frac\dy{\dy \beta_1} & d\alpha_n\frac{\dy}{\dy \beta_2} & \cdots & d\alpha_n\frac\dy{\dy \beta_n}
\end{bmatrix}
 \ \ = \ \
\det\left(d\alpha_i\frac\dy{\dy \beta_j}\right),
\]
for $\alpha_i,\beta_j$ a basis of the underlying real manifold (as in the previous post "Vector fields," 2016-10-10). The components of the vector (3) may be viewed as given in directions $z_1,\overline{z_1}, z_2,\overline{z_2}$, respectively, which also indicates how the coefficient functions $\chi_{k\ell}$ act on (3). Apply the definition of $\omega$ from equation (1), and note that we are always at the tangent space to the point $\gamma(t)=(\gamma_1(t),\gamma_2(t))$, to get that
\begin{align*}
& \omega\left(\frac{d \gamma}{dt},I\frac{d\gamma}{dt}\right) \\
& = \lambda_2(\gamma(t)) \sum_{k,\ell=1}^2 \chi_{k\ell}(\gamma(t)) dz_k\wedge d\overline{z_\ell}\left(\overline \gamma_1'\frac\dy{\dy z_1} + \gamma_1'\frac\dy{\dy \overline{z_1}} + \overline \gamma_2' \frac\dy{\dy z_2} + \gamma_2' \frac{\dy}{\dy \overline{z_2}}, i\overline \gamma_1'\frac\dy{\dy z_1} - i\gamma_1'\frac\dy{\dy \overline{z_1}} + i\overline \gamma_2' \frac\dy{\dy z_2} -i\gamma_2' \frac{\dy}{\dy \overline{z_2}}\right) \\
& = \lambda_2(\gamma(t)) \sum_{k,\ell=1}^2 \chi_{k\ell}(\gamma(t))\det
\begin{bmatrix}
\overline \gamma_k'(t) & i\overline \gamma_k'(t) \\[5pt] \gamma_\ell'(t) & -i\gamma_\ell'(t)
\end{bmatrix} \\
& = \frac{(1+|\gamma_2(t)|^2)|\gamma_1'(t)|^2 - \overline\gamma_1(t)\gamma_2(t)\overline\gamma_1'(t)\gamma_2'(t) - \overline\gamma_2(t)\gamma_1(t)\overline \gamma_2'(t)\gamma_1'(t) + (1+|\gamma_1(t)|^2) |\gamma_2'(t)|^2}{\pi\left(1+\left|\gamma_1(t)\right|^2+\left|\gamma_2(t)\right|^2\right)^2}.\end{align*}
Unfortunately this expression does not simplify too much. In $\P^n$, with $\gamma = (\gamma_1,\dots,\gamma_n):[0,1]\to \C^n$, we have that
\[
g\left(\frac{d \gamma}{dt},\frac{d\gamma}{dt}\right) = \lambda_n(\gamma(t)) \sum_{k,\ell=1}^n \chi_{k\ell}(\gamma(t))\det
\begin{bmatrix}
\overline \gamma_k'(t) & i\overline \gamma_k'(t) \\[5pt] \gamma_\ell'(t) & -i\gamma_\ell'(t)
\end{bmatrix}.
\]

An example


Here we compute the distance between two points in $\P^2$. Let $\gamma$ be the straight line segment connecting $p=[p_0:p_1:p_2]$ and $q=[q_0:q_1:q_2]$. The word "straight" is used loosely, and means the segment may be parametrized as
\[
\gamma(t) = [(1-t)p_0+tq_0:(1-t)p_1+tq_1:(1-t)p_2+tq_2],
\]
so $\gamma(0)=p$ and $\gamma(1)=q$. The image of $\gamma$ under $\vp_0$ and its derivative are given by
\[
\vp_0(\gamma(t)) = \left(\frac{(1-t)p_1+tq_1}{(1-t)p_0+tq_0}, \frac{(1-t)p_2+tq_2}{(1-t)p_0+tq_0}\right) = (\gamma_1,\gamma_2),
\hspace{2cm}
\gamma_i' = \frac{q_ip_0-q_0p_i}{((1-t)p_0+tq_0)^2}.
\]
If, for example, $p=[1:1:0]$ and $q=[1:0:1]$, then
\[
\text{length}(\gamma) = \frac{3}{4\pi}\int_0^1\frac1{(t^2-t+1)^2}\ dt = \frac{9+2\pi\sqrt 3}{18\pi}.
\]

A further goal is to consider the path $\gamma$ as lying on a projective variety, beginning with a complete intersection. This would allow some of the $dz_i$ to be expressed in terms of other $dz_j$.

References: Huybrechts (Complex geometry, Section 3.1), Voisin (Hodge theory and complex algebraic geometry 1, Chapter 3.1), Wells (Differential analysis on complex manifolds, Chapter V.4)

Thursday, June 16, 2016

Smooth projective varieties as Kähler manifolds

Definition: Let $k$ be a field and $\P^n$ projective $n$-space over $k$. An algebraic variety $X\subset \P^n$ is the zero locus of a collection of homogeneous polynomials $f_i\in k[x_0,\dots,x_n]$.

Here we let $k=\C$, the complex numbers. Complex projective space $\C\P^n$ may be described as a complex manifold, with open sets $U_i = \{(x_0:\cdots:x_n)\ :\ x_i\neq 0\}$ and maps
\[
\begin{array}{r c l}
\varphi_i\ :\ U_i & \to & \C^n, \\
(x_0:\cdots:x_n) & \mapsto & \left(\frac{x_0}{x_i},\dots,\widehat{\frac{x_i}{x_i}},\dots,\frac{x_n}{x_i}\right),
\end{array}
\]
which can be quickly checked to agree on overlaps. In this context we assume all varieties are smooth, so they are submanifolds of $\C\P^n$.

Definition: An almost complex manifold is a real manifold $M$ together with a vector bundle endomorphism $J:TM\to TM$ (called a complex structure) with $J^2=-\id$.

Note that every complex manifold admits an almost complex structure on its underlying real manifold. Indeed, given standard coordinates $z_i=x_i+y_i$ for $i=1,\dots,n$ on $\C^n$, we get a basis $\partial/\partial x_1, \dots, \partial /\partial x_n$, $\partial/\partial y_1, \dots, \partial/\partial y_n$ on the underlying real tangent space $T_pU$, for $p\in M$ and $U\owns p$ a neighborhood. Then $J$ is defined by
\[
J\left(\frac\partial{\partial x_i}\right) = \frac\partial{\partial y_i}
\hspace{1cm},\hspace{1cm}
J\left(\frac\partial{\partial y_i}\right) = -\frac\partial{\partial x_i}.
\]
Write $T_\C M=TM\otimes_\R\C$ for the complexification of the tangent bundle, which admits a canonical decomposition $T_\C M = T^{1,0}M\oplus T^{0,1}M$, where $J|_{T^{1,0}}=i\cdot \id$ and $J|_{T^{0,1}}=(-i)\cdot \id$. We call $T^{1,0}M$ the holomorphic tangent bundle of $M$ and $T^{0,1}M$ the antiholomorphic tangent bundle of $M$, even though it is extraneous to consider any related map here as holomorphic. Define vector bundles (or sheaves, to consider sections on open sets)
\[
A^k_M = \textstyle \bigwedge^k(T_\C M)^*,
\hspace{1cm}
A^{p,q}_M = \textstyle \bigwedge^p(T^{1,0}M)^* \otimes_\C \bigwedge^q(T^{0,1}M)^*,
\]
where we drop the subscript $M$ when the context makes it clear. There is a canonical decomposition $A^k = \bigoplus_{p+q=k} A^{p,q}$, which yields projection maps $\pi^{p,q}:A^k \to A^{p,q}$. The exterior differential $d$ on $T^*M$ may be extended $\C$-linearly to $(T_\C M)^*$, and hence also to $A^k$. Define two new maps
\begin{align*}
\partial = \pi^{p+1,q}\circ d|_{A^{p,q}}\ :\ &\ A^{p,q} \to A^{p+1,q}, \\
\bar\partial = \pi^{p,q+1}\circ d|_{A^{p,q}}\ :\ &\ A^{p,q} \to A^{p,q+1}.
\end{align*}
These satisfy the Leibniz rule and (under mild assumptions) $\partial^2 = \bar\partial^2 = 0$ and $\partial \bar \partial = -\bar \partial \partial$.

From now on, the manifold $M$ will be complex with the natural complex structure described above.

Definition: A Riemannian metric on $M$ is a function $g:TM\times TM \to C^\infty(M)$ such that for all $V,W\in TM$,
  • $g(V,W)=g(W,V)$, and
  • $g_p(V_p,V_p)\geqslant 0$ for all $p\in M$, with equality iff $V=0$.
A Riemannian manifold is a pair $(M,g)$ where $g$ is Riemannian.

Locally we write $g_p:T_pM\times T_pM \to \R$, defined as $g_p(V_p,W_p)=g(V,W)(p)$. If $x_1,\dots,x_n$ are local coordinates on some open set $U\subset M$, then $g=\sum_{i,j}g_{ij}dx_i\wedge dx_j\in A^2(M)$, for $g_{ij} = g(\frac\partial{\partial x_i},\frac \partial{\partial x_j})\in C^\infty(U)$. Writing $V = \sum_if_i\frac\partial{\partial x_i}$ and $W=\sum_jg_j\frac\partial{\partial x_j}$, we get the local expression
\[
g_p(V_p,W_p) = \sum_{i,j}g_{ij}(p)f_i(p)g_j(p).
\]

Definition: A Hermitian metric on a complex manifold $M$ is a Riemannian metric $g$ such that $g(JV,JW)=g(V,W)$ for all $V,W\in TM$. A Hermitian manifold is a pair $(M,g)$ where $g$ is Hermitian.

There is an induced form $\omega:TM \times TM\to C^\infty(M)$ given by $\omega (V,W)=g(JV,W)$, called the fundamental form. From $g$ being Hermitian it follows that $\omega\in A^{1,1}(M)\subset A^2(M)$. Note also that any two of the structures $J,g,\omega$ determine the remaining one.

Definition: A Kähler metric on a complex manifold $M$ is a Hermitian metric whose fundamental form is closed (that is, $d\omega = 0$). A Kähler manifold is a pair $(M,g)$ where $g$ is Kähler.

Example: Recall the atlas given to $\C\P^n$ above. There is a metric (canonical in some sense) on each $U_j$ given by
\[
\omega_j = \frac i{2\pi} (\partial \circ \bar\partial) \left(\log\left(\sum_{\ell=0}^n \left|\frac{x_\ell}{x_j}\right|^2 \right)\right),
\]
called the Fubini--Study metric. Each $\omega_j$ is a section of $A^{1,1}(U_j)$, and as a quick calculation shows that $\omega_j|_{U_j\cap U_k} = \omega_k|_{U_j\cap U_k}$, there is a global metric $\omega_{FS}\in A^{1,1}(\C\P^n)$ such that $\omega_{FS}|_{U_j} = \omega_j$ for all $j$.

Hence $\C\P^n$ is a Kähler manifold. If we have a smooth projective variety $X\subset \C\P^n$, then it is a submanifold of $\C\P^n$, so by restricting $\omega_{FS}$ to $X$, we get that $X$ is also a Kähler manifold. Therefore all smooth projective varieties are Kähler.

References: Huybrechts (Complex Geometry, Chapters 1.3, 2.6, 3.1), Lee (Riemannian manifolds, Chapter 3)