Showing posts with label variety. Show all posts
Showing posts with label variety. Show all posts

Wednesday, March 15, 2017

Lengths of paths on projective varieties

This post contains calculations that continue on the ideas from the previous post "Fubini--Study metric," 2017-03-05. First we suppose that $\gamma$ lies on a curve $C\subset \P^2$, with the curve defined as the zero locus of a polynomial $P$. Taking the derivative of $P$ on $\C^2$ gives $P_{z_1}dz_1 + P_{z_2}dz_2=0$, which can be manipulated to give
\begin{align*}
dz_2 & = \frac{-P_{z_1}}{P_{z_2}}dz_1, & \frac\dy{\dy z_2} & = \frac{-P_{z_2}}{P_{z_1}} \frac\dy{\dy z_1},\\
d\overline{z_2} & = \frac{-\overline{P_{z_1}}}{\overline{P_{z_2}}}d\overline{z_1}, & \frac\dy{\dy \overline{z_2}} & = \frac{-\overline{P_{z_2}}}{\overline{P_{z_1}}} \frac\dy{\dy \overline{z_1}}.
\end{align*}
Using the above and an equation from the mentioned post, for $e = \frac\dy{\dy z_1} + \frac\dy{\dy \overline {z_1}} + \frac\dy{\dy z_2} + \frac\dy{\dy \overline{z_2}}$, we get
\begin{align*}
\frac{d \gamma}{dt} & = \left(\overline\gamma_1'-\frac{P_{z_2}}{P_{z_1}}\overline \gamma_2'\right)\frac\dy{\dy z_1} + \left(\gamma_1' - \frac{\overline{P_{z_2}}}{\overline{P_{z_1}}}\gamma_2'\right)\frac\dy{\dy \overline{z_1}} \\
\left(\sum_{k,\ell=1}^2\chi_{k\ell}(\gamma)dz_k\wedge d\overline{z_\ell}\right)(e,e) & = 1+|\gamma_2|^2 + \frac{\overline{P_{z_1}}}{\overline{P_{z_2}}} \overline \gamma_1\gamma_2 + \frac{P_{z_1}}{P_{z_2}}\gamma_1\overline\gamma_2 + \left|\frac{P_{z_1}}{P_{z_2}}\right|^2 \left(1+|\gamma_1|^2\right) = 1 +\left|\frac{P_{z_1}}{P_{z_2}}\right|^2 + \left|\frac{P_{z_1}}{P_{z_2}}\gamma_1+\gamma_2\right|^2, \\
(dz_1\wedge d\overline{z_1})\left(\frac{d\gamma}{dt},I\frac{d\gamma}{dt}\right) & = \det
\begin{bmatrix}
\overline\gamma_1'-\frac{P_{z_2}}{P_{z_1}}\overline \gamma_2' & i\left(\overline\gamma_1'-\frac{P_{z_2}}{P_{z_1}}\overline \gamma_2'\right) \\[5pt]
\gamma_1' - \frac{\overline{P_{z_2}}}{\overline{P_{z_1}}}\gamma_2' & -i\left(\gamma_1' - \frac{\overline{P_{z_2}}}{\overline{P_{z_1}}}\gamma_2'\right)
\end{bmatrix} = -2i \left|\gamma_1' - \frac{\overline{P_{z_2}}}{\overline{P_{z_1}}}\gamma_2'\right|^2.
\end{align*}
Hence
\[
g\left(\frac{d\gamma}{dt},\frac{d\gamma}{dt}\right) = \frac{\left(1 +\left|\frac{P_{z_1}}{P_{z_2}}\right|^2 + \left|\frac{P_{z_1}}{P_{z_2}}\gamma_1+\gamma_2\right|^2\right)\left|\gamma_1' - \frac{\overline{P_{z_2}}}{\overline{P_{z_1}}}\gamma_2'\right|^2}{\pi\left(1+|\gamma_1|^2+|\gamma_2|^2\right)^2}.
\]

Now we move to $\P^n$, and consider $X\subset \P^n$ a complete intersection of codimension $r$, or the zero set of polynomials $P_1=0,\dots,P_r=0$. Expressing some covectors in terms of others reduces the number of determinants we calculated above from $2n$ to $2(n-r)$. Then
\begin{align*}
P_{1,z_1}dz_1 + \cdots + P_{1,z_n}dz_n & = 0, & dz_n & = c_{n,1}dz_1 + \cdots + c_{n,n-r}dz_{n-r}, \\
& \ \ \vdots & & \ \ \vdots \\
P_{r,z_1}dz_1 + \cdots + P_{r,z_n}dz_n & = 0, & dz_{n-r+1} & = c_{n-r+1,1}dz_1 + \cdots + c_{n-r+1,n-r}dz_{n-r},
\end{align*}
for the $c_{i,j}$ some combinations of the $P_{k,z_\ell}$. By orthonormality of the basis vectors, and assuming that the $c_{i,j}$ are all non-zero, we find
\[
\frac\dy{\dy z_i} = \sum_{j=1}^{n-r} \frac1{(n-r)c_{i,j}}\frac\dy{\dy z_j},\hspace{2cm}
\frac\dy{\dy \overline{z_i}} = \sum_{j=1}^{n-r} \frac1{(n-r)\overline{c_{i,j}}}\frac\dy{\dy \overline{z_j}},
\]
for all integers $n-r<i\leqslant n$. This allows us to rewrite the path derivative as
\begin{align*}
\frac{d\gamma}{dt} & = \sum_{i=1}^n \overline \gamma_i'\frac\dy{\dy z_i} +\gamma_i'\frac\dy{\dy \overline{z_i}} \\
& = \sum_{i=1}^{n-r} \left(\overline \gamma_i'\frac\dy{\dy z_i} +\gamma_i'\frac\dy{\dy \overline{z_i}}\right) +\sum_{i=n-r+1}^n \left(\sum_{j=1}^{n-r} \frac{\overline \gamma_i'}{(n-r)c_{i,j}}\frac\dy{\dy z_j} + \sum_{j=1}^{n-r} \frac{\gamma_i'}{(n-r)\overline{c_{i,j}}}\frac\dy{\dy \overline{z_j}}\right) \\
& = \sum_{i=1}^{n-r}\left(\overline\gamma_i' + \sum_{j=n-r+1}^n \frac{\overline\gamma_j'}{(n-r)c_{j,i}}\right)\frac\dy{\dy z_i} + \left(\gamma_i'+\sum_{j=n-r+1}^n \frac{\gamma_j'}{(n-r)\overline{c_{j,i}}}\right)\frac\dy{\dy \overline{z_i}}.
\end{align*}

In the case of a curve in $\P^n$, when $r=n-1$, let $c_{1,1}=1$ and  $e = \frac\dy{\dy z_1} + \frac\dy{\dy \overline {z_1}} + \cdots + \frac\dy{\dy z_n} + \frac\dy{\dy \overline{z_n}}$ to get
\begin{align*}
 \frac{d\gamma}{dt} & = \left(\sum_{j=1}^n \frac{\overline\gamma_j'}{c_{j1}}\right)\frac\dy{\dy z_1} + \left(\sum_{j=1}^n \frac{\gamma_j'}{\overline{c_{j1}}}\right)\frac\dy{\dy \overline{z_1}},\\
 \left(\sum_{k,\ell=1}^n\chi_{k\ell}(\gamma)dz_k\wedge d\overline{z_\ell}\right)(e,e) & = \sum_{k,\ell=1}^n \left(1+\sum_{i=1}^n |\gamma_i|^2\right)\delta_{k\ell} - \overline{\gamma_kc_{\ell1}}\gamma_\ell c_{k1}, \\
(dz_1\wedge d\overline{z_1})\left(\frac{d\gamma}{dt},I\frac{d\gamma}{dt}\right) & = \det
\begin{bmatrix}
\sum_{j=1}^n \frac{\overline\gamma_j'}{c_{j1}} & i \sum_{j=1}^n \frac{\overline\gamma_j'}{c_{j1}} \\[5pt]
\sum_{j=1}^n \frac{\gamma_j'}{\overline{c_{j1}}} & -i\sum_{j=1}^n \frac{\gamma_j'}{\overline{c_{j1}}}
\end{bmatrix} = -2i \left|\sum_{j=1}^n \frac{\gamma_j'}{\overline{c_{j1}}}\right|^2.
\end{align*}
Hence
\[
g\left(\frac{d\gamma}{dt},\frac{d\gamma}{dt}\right) = \frac{\left(\sum_{k,\ell=1}^n \left(1+\sum_{i=1}^n |\gamma_i|^2\right)\delta_{k\ell} - \overline{\gamma_kc_{\ell1}}\gamma_\ell c_{k1}\right)\left|\sum_{j=1}^n \frac{\gamma_j'}{\overline{c_{j1}}}\right|^2}{\pi \left(1+\sum_{i=1}^n |\gamma_i|^2\right)^2}.
\]
The terms $\overline{\gamma_kc_{\ell1}}\gamma_\ell c_{k1}$ may be rearranged into terms $|\gamma_kc_{\ell1}-\gamma_\ell c_{k1}|^2$, but it does not provide any enlightening results, similarly to the rest of this post.

Tuesday, June 28, 2016

The conditioning number of a projective curve

Let $C$ be a smooth algebraic curve in $\P^2$. That is, for some homogeneous $f\in \C[x_0,x_1,x_2]$ we let $C = \{x\in \P^2\ :\ f(x)=0\}$. Describe $C$ as a manifold via the usual open sets $U_i = \{x\in \P^2\ :\ x_i\neq 0\}$ and charts
\[
\begin{array}{r c l}
\varphi_0\ :\ U_0 & \to & \C^2, \\\
[x_0:x_1:x_2] & \mapsto & (\frac{x_1}{x_0},\frac{x_2}{x_0}),
\end{array}
\hspace{1cm}
\begin{array}{r c l}
\varphi_1\ :\ U_1 & \to & \C^2, \\\
[x_0:x_1:x_2] & \mapsto & (\frac{x_0}{x_1},\frac{x_2}{x_1}),
\end{array}
\hspace{1cm}
\begin{array}{r c l}
\varphi_2\ :\ U_2 & \to & \C^2, \\\
[x_0:x_1:x_2] & \mapsto & (\frac{x_0}{x_2},\frac{x_1}{x_2}).
\end{array}
\]
Let $w=[w_0:w_1:w_2]\in \P^2$ for which $f(w)=0$. The Jacobian of $C$ at $w$ is then
\[
J_w = \left[
\left.\frac{\dy f}{\dy x_0}\right|_w \ :\  \left.\frac{\dy f}{\dy x_1}\right|_w \ :\  \left.\frac{\dy f}{\dy x_2}\right|_w
\right] \in \P^2.
\]
Assume that $\left.\frac{\dy f}{\dy x_0}\right|_w\neq 0$ and pass to $\varphi_0(U_0)$ to get the Jacobian to be
\[
J_w^0 = \left(
\frac{\dy f/\dy x_1|_w}{\dy f/\dy x_0|_w}\ ,\ \frac{\dy f/\dy x_2|_w}{\dy f/\dy x_0|_w}\right)  \in \C^2.
\]
Assume that $w_0\neq 0$, so the tangent line to $\varphi_0(C)\subset \C^2$ at $\varphi_0(w)=(w_1/w_0,w_2/w_0)$ is
\[
T_{\varphi_0(w)}= \{\varphi_0(w)+tJ_w^0\ :\ t\in \C\}\subset \C^2.
\]
A vector orthogonal to the Jacobian $J_w^0$ is
\[
\bar J_w^0 = \left(-\frac{\dy f/\dy x_2|_w}{\dy f/\dy x_0|_w}\ ,\ \frac{\dy f/\dy x_1|_w}{\dy f/\dy x_0|_w}\right) \in \C^2,
\]
so the space space normal to $T_{\varphi_0(w)}$ is given by
\[
T_{\varphi_0(w)}^\perp = \{\varphi_0(w)+t\bar J_w^0\ :\ t\in \C\}\subset \C^2.
\]

Example: Let $C\subset \P^2$ be the zero locus of $f(x_0,x_1,x_2) = x_0^2+x_1x_2-x_1x_0$. The Jacobian is $J = [2x_0-x_1:x_2-x_0:x_1]$, and as $J=0$ implies $x_0=x_1=x_2=0$, but $0\not\in\P^2$, the curve $C$ is smooth. Consider two points $w=[1:1:0],z=[2:1:-2]\in C$, at which the Jacobian is
\[
J_w = [1:-1:1]
\hspace{1cm},\hspace{1cm}
J_z = [3:-4:1].
\]
Both $w_0$ and $z_0$ are non-zero, with $\varphi_0(w)=(1,0)$ and $\varphi_0(z)=(1/2,-1)$, giving the tangent and normal spaces to be
\begin{align*}
T_{(1,0)} & = \{(1,0)+t(-1,1)\ :\ t\in \C\}, & T_{(1/2,-1)} & = \{(1/2,-1)+s(-4/3,1/3)\ :\ s\in \C\}, \\
T^\perp_{(1,0)} & = \{(1,0)+t(-1,-1)\ :\ t\in \C\}, & T_{(1/2,-1)}^\perp & = \{(1/2,-1)+s(-1/3,-4/3)\ :\ s\in \C\}.
\end{align*}
The two normal spaces intersect at $(t,s)=(1/3,-1/2)$ at distances of $1/3\cdot ||(-1,-1)|| = \sqrt 2/3\approx 0.471$ and $1/2\cdot||(-1/3,-4/3)|| = \sqrt{17}/3\approx 1.374$ from the points $\varphi_0(w),\varphi_0(z)$, respectively. Hence the conditioning number of $C$ is at most $\sqrt 2/3$.

Given a smooth projective curve and a finite set of points, this Sage code will calculate the conditioning number from that collection of points.

Thursday, June 16, 2016

Smooth projective varieties as Kähler manifolds

Definition: Let $k$ be a field and $\P^n$ projective $n$-space over $k$. An algebraic variety $X\subset \P^n$ is the zero locus of a collection of homogeneous polynomials $f_i\in k[x_0,\dots,x_n]$.

Here we let $k=\C$, the complex numbers. Complex projective space $\C\P^n$ may be described as a complex manifold, with open sets $U_i = \{(x_0:\cdots:x_n)\ :\ x_i\neq 0\}$ and maps
\[
\begin{array}{r c l}
\varphi_i\ :\ U_i & \to & \C^n, \\
(x_0:\cdots:x_n) & \mapsto & \left(\frac{x_0}{x_i},\dots,\widehat{\frac{x_i}{x_i}},\dots,\frac{x_n}{x_i}\right),
\end{array}
\]
which can be quickly checked to agree on overlaps. In this context we assume all varieties are smooth, so they are submanifolds of $\C\P^n$.

Definition: An almost complex manifold is a real manifold $M$ together with a vector bundle endomorphism $J:TM\to TM$ (called a complex structure) with $J^2=-\id$.

Note that every complex manifold admits an almost complex structure on its underlying real manifold. Indeed, given standard coordinates $z_i=x_i+y_i$ for $i=1,\dots,n$ on $\C^n$, we get a basis $\partial/\partial x_1, \dots, \partial /\partial x_n$, $\partial/\partial y_1, \dots, \partial/\partial y_n$ on the underlying real tangent space $T_pU$, for $p\in M$ and $U\owns p$ a neighborhood. Then $J$ is defined by
\[
J\left(\frac\partial{\partial x_i}\right) = \frac\partial{\partial y_i}
\hspace{1cm},\hspace{1cm}
J\left(\frac\partial{\partial y_i}\right) = -\frac\partial{\partial x_i}.
\]
Write $T_\C M=TM\otimes_\R\C$ for the complexification of the tangent bundle, which admits a canonical decomposition $T_\C M = T^{1,0}M\oplus T^{0,1}M$, where $J|_{T^{1,0}}=i\cdot \id$ and $J|_{T^{0,1}}=(-i)\cdot \id$. We call $T^{1,0}M$ the holomorphic tangent bundle of $M$ and $T^{0,1}M$ the antiholomorphic tangent bundle of $M$, even though it is extraneous to consider any related map here as holomorphic. Define vector bundles (or sheaves, to consider sections on open sets)
\[
A^k_M = \textstyle \bigwedge^k(T_\C M)^*,
\hspace{1cm}
A^{p,q}_M = \textstyle \bigwedge^p(T^{1,0}M)^* \otimes_\C \bigwedge^q(T^{0,1}M)^*,
\]
where we drop the subscript $M$ when the context makes it clear. There is a canonical decomposition $A^k = \bigoplus_{p+q=k} A^{p,q}$, which yields projection maps $\pi^{p,q}:A^k \to A^{p,q}$. The exterior differential $d$ on $T^*M$ may be extended $\C$-linearly to $(T_\C M)^*$, and hence also to $A^k$. Define two new maps
\begin{align*}
\partial = \pi^{p+1,q}\circ d|_{A^{p,q}}\ :\ &\ A^{p,q} \to A^{p+1,q}, \\
\bar\partial = \pi^{p,q+1}\circ d|_{A^{p,q}}\ :\ &\ A^{p,q} \to A^{p,q+1}.
\end{align*}
These satisfy the Leibniz rule and (under mild assumptions) $\partial^2 = \bar\partial^2 = 0$ and $\partial \bar \partial = -\bar \partial \partial$.

From now on, the manifold $M$ will be complex with the natural complex structure described above.

Definition: A Riemannian metric on $M$ is a function $g:TM\times TM \to C^\infty(M)$ such that for all $V,W\in TM$,
  • $g(V,W)=g(W,V)$, and
  • $g_p(V_p,V_p)\geqslant 0$ for all $p\in M$, with equality iff $V=0$.
A Riemannian manifold is a pair $(M,g)$ where $g$ is Riemannian.

Locally we write $g_p:T_pM\times T_pM \to \R$, defined as $g_p(V_p,W_p)=g(V,W)(p)$. If $x_1,\dots,x_n$ are local coordinates on some open set $U\subset M$, then $g=\sum_{i,j}g_{ij}dx_i\wedge dx_j\in A^2(M)$, for $g_{ij} = g(\frac\partial{\partial x_i},\frac \partial{\partial x_j})\in C^\infty(U)$. Writing $V = \sum_if_i\frac\partial{\partial x_i}$ and $W=\sum_jg_j\frac\partial{\partial x_j}$, we get the local expression
\[
g_p(V_p,W_p) = \sum_{i,j}g_{ij}(p)f_i(p)g_j(p).
\]

Definition: A Hermitian metric on a complex manifold $M$ is a Riemannian metric $g$ such that $g(JV,JW)=g(V,W)$ for all $V,W\in TM$. A Hermitian manifold is a pair $(M,g)$ where $g$ is Hermitian.

There is an induced form $\omega:TM \times TM\to C^\infty(M)$ given by $\omega (V,W)=g(JV,W)$, called the fundamental form. From $g$ being Hermitian it follows that $\omega\in A^{1,1}(M)\subset A^2(M)$. Note also that any two of the structures $J,g,\omega$ determine the remaining one.

Definition: A Kähler metric on a complex manifold $M$ is a Hermitian metric whose fundamental form is closed (that is, $d\omega = 0$). A Kähler manifold is a pair $(M,g)$ where $g$ is Kähler.

Example: Recall the atlas given to $\C\P^n$ above. There is a metric (canonical in some sense) on each $U_j$ given by
\[
\omega_j = \frac i{2\pi} (\partial \circ \bar\partial) \left(\log\left(\sum_{\ell=0}^n \left|\frac{x_\ell}{x_j}\right|^2 \right)\right),
\]
called the Fubini--Study metric. Each $\omega_j$ is a section of $A^{1,1}(U_j)$, and as a quick calculation shows that $\omega_j|_{U_j\cap U_k} = \omega_k|_{U_j\cap U_k}$, there is a global metric $\omega_{FS}\in A^{1,1}(\C\P^n)$ such that $\omega_{FS}|_{U_j} = \omega_j$ for all $j$.

Hence $\C\P^n$ is a Kähler manifold. If we have a smooth projective variety $X\subset \C\P^n$, then it is a submanifold of $\C\P^n$, so by restricting $\omega_{FS}$ to $X$, we get that $X$ is also a Kähler manifold. Therefore all smooth projective varieties are Kähler.

References: Huybrechts (Complex Geometry, Chapters 1.3, 2.6, 3.1), Lee (Riemannian manifolds, Chapter 3)