Showing posts with label holomorphic vector bundle. Show all posts
Showing posts with label holomorphic vector bundle. Show all posts

Monday, July 25, 2016

Connections, curvature, and Higgs bundles

Recall (from a previous post) that a Kähler manifold $M$ is a complex manifold (with natural complex structure $J$) with a Hermitian metic $g$ whose fundamental form $\omega$ is closed. In this context $M$ is Kähler. Previously we used upper-case letters $V,W$ to denote vector fields on $M$, but here we use lower-case letters $s,u,v$ and call them sections (to consider vector bundles more generally as sheaves).

Definition: A connection on $M$ is a $\C$-linear homomorphism $\nabla: A^0_M\to A^1_M$ satisfying the Leibniz rule $\nabla(fs) = (df)\wedge s + f\nabla (s)$, for $s$ a section of $TM$ and $f\in C^\infty(M)$.

For ease of notation, we often write $\nabla_us$ for $\nabla(s)(u)$, where $s,u$ are sections of $TM$. On Kähler manifolds there is a special connection that we will consider.

Proposition:
On $M$ there is a unique connection $\nabla$ that is (for any $u,v\in A^0_M$)
  1. Hermitian (satisfies $dg(u,v) = g(\nabla (u),v) + g(u,\nabla (v))$),
  2. torsion-free (satisfies $\nabla_uv - \nabla_vu-[u,v] = 0$), and
  3. compatible with the complex structure $J$ (satisfies $\nabla_uv = \nabla_{Ju}(Jv)$).

If $\nabla$ satisfies the first two conditions, it is called the Levi-Civita connection, and if it satisfies the first and third conditions, it is called the Chern connection. If $g$ is not necessarily Hermitian, $\nabla$ is called metric if it satisfies the first condition. From here on out $\nabla$ denotes the unique tensor described in the proposition above.

Definition: The curvature tensor of $M$ is defined by
\[
R(u,v) = \nabla_u\nabla_v - \nabla_v\nabla_u-\nabla_{[u,v]}.
\]
It may be viewed as a map $A^2 \to A^1$, or $A^3\to A^0$, or $A^0\to A^0$. The Ricci tensor of $M$ is defined by
\[
r(u,v) = \trace(w\mapsto R(u,v)w) = \sum_i g(R(a_i,u)v,a_i),
\]
for the $a_i$ a local orthonormal basis of $A^0 = TM$. This is a map $A^2\to A^0$. The Ricci curvature of $M$ is defined by
\[
\Ric(u,v) = r(Ju,v).
\]
This is a map $A^2\to A^0$.

Definition: An Einstein manifold is a pair $(M,g)$ that is Riemannian and for which the Ricci curvature is directly proportional to the Riemannian metric. That is, there exists a constant $\lambda\in \R$ such that $\Ric(u,v) = \lambda g(u,v)$ for any $u,v\in A^1$.

Recall that a holomorphic vector bundle $\pi:E\to M$ has complex fibers and holomorphic projection map $\pi$. Here we consider two special vector bundles (as sheaves), defined on open sets $U\subset M$ by
\begin{align*}
\End(E)(U) & = \{f:\pi^{-1}(U)\to \pi^{-1}(U)\ :\ f|_{\pi^{-1}(x)}\text{\ is a homomorphism}\}, \\
\Omega_M(U) & = \left\{\sum_{i=0}^n f_idz_1\wedge\cdots \wedge dz_i\ :\ f_i\in C^\infty(U)\right\},
\end{align*}
where $z_1,\dots,z_n$ are local coordinates on $U$. The first is the endomorphism sheaf of $E$ and the second is the sheaf of differential forms of $M$, or the holomorphic cotangent sheaf. The cotangent sheaf as defined is a presheaf, so we sheafify to get $\Omega_M$.

Definition: A Higgs vector bundle over a complex manifold $M$ is a pair $(E,\theta)$, where $\pi:E\to M$ is a holomorphic vector bundle and $\theta$ is a holomorphic section of $\text{End}(E)\otimes \Omega_M$ with $\theta\wedge\theta = 0$, called the Higgs field.

References: Huybrechts (Complex Geometry, Chapters 4.2, 4.A), Kobayashi and Nomizu (Foundations of Differential Geometry, Volume 1, Chapter 6.5)