Processing math: 0%

Friday, April 27, 2018

Induced orders on sets

The goal of this post is to understand when a map from a poset to an unordered set induces a partial order, and how that applies to the specific case of the set of simplicial complexes. Thanks to Yanlong Hao for spotting some mistakes in my seminar talk on the same topic yesterday.

Definition 1: Let (A, be a poset and f\colon A\to B a map of sets. The relation \leqslant_B on B, with a\leqslant_Aa' implying f(a)\leqslant_Bf(a'), is the relation induced by f on B. The map f is monotonic if whenever b\leqslant_b b',
  1. if a\in f^{-1}(b), a'\in f^{-1}(b) are comparable, then a\leqslant_A a', and
  2. if a'\in f^{-1}(b'), then there exists a\in f^{-1}(b) such that a\leqslant_A a'.
Since f may not be surjective, there may be b\in B with f^{-1}(b) = \emptyset. For such b we only have b\leqslant_B b and b is not comparable to any other element of B.

Lemma 2: If f\colon A\to B is monotonic, then the induced relation \leqslant_B is a partial order on B.

Proof: For reflexivity, take any a\in A, which has a\leqslant_A a by reflexivity of \leqslant_A. Then f(a)\leqslant_Bf(a), so every b\in \im(f) satisfies reflexivity. Every b\not\in\im(f) also satisfies reflexivity by the comment above.

For anti-symmetry, suppose that b\leqslant_Bb' and b'\leqslant_Bb. Since b\leqslant_B b', there is some a\in f^{-1}(b) and a'\in f^{-1}(b') such that a\leqslant_A a'. Similarly, there is some c'\in f^{-1}(b') and c\in f^{-1}(b) such that c'\leqslant_A c. Since c\in f^{-1}(b) and c'\in f^{-1}(b') are comparable, and the first assumed relation is b\leqslant_Bb', by property 1 of Definition 1, we must have c\leqslant_A c'. By anti-symmetry of A, we now have that c=c', so it follows that b=f(c)=f(c')=b'.

For transitivity, suppose that b\leqslant_Bb' and b'\leqslant_Bb''. Take a''\in f^{-1}(b''), for which property 2 of Definition 1 guarantees that there exists a'\in f^{-1}(b') such that a'\leqslant_Aa''. Similarly, the first assumed relation and the same property guarantees there exists a\in f^{-1}(b) such that a\leqslant_Aa'. By transitivity of A, we have a\leqslant_A a''. By the definition of \leqslant_B, we have b=f(a) \leqslant_B f(a'') = b''. \square

Let M be a piecewise linear, compact, connected, embedded manifold in \R^N, and SC the category of simplicial complexes. Let A= \{1<2a>2b<3\}. The product A^N has the product order. Fix n\in \Z_{>0} and let T be the set of all distinct 2-,3-,...,n-tuples in \{1,\dots,n\}, or T := \bigcup_{k=2}^n\left(\{1,\dots,n\}^k\setminus \Delta\right)/_{S_k}. This set has size \sum_{k=2}^n \binom nk = 2^n-n-1. Assume every v\in T is ordered in the canonical way. Then v induces a natural projection \pi_v\colon M^n \to M^{v}, as well as another map \begin{array}{r c l} \pi_v'\colon M^n \times \R_{>0} & \to & A, \\ (P,t) & \mapsto & \begin{cases} 1 & \forall\ i,j, \pi_v(P)_i = \pi_v(P)_j, \\ 2a & \exists\ i,j \text{ s.t. }\pi_v(P)_i\neq\pi_v(P)_j \text{ and } \textstyle\bigcap_{i=1}^{|v|} B(\pi_v(P)_i,t) \neq \emptyset, \\ 2b & \exists\ i,j \text{ s.t. }\pi_v(P)_i\neq\pi_v(P)_j \text{ and } \textstyle\bigcap_{i=1}^{|v|} B(\pi_v(P)_i,t)=*, \\ 3 & \exists\ i,j \text{ s.t. }\pi_v(P)_i\neq\pi_v(P)_j \text{ and } \textstyle\bigcap_{i=1}^{|v|} B(\pi_v(P)_i,t) = \emptyset. \end{cases} \end{array} Here all the balls B are closed, and M^n has the Hausdorff topology.

Lemma 3: The map \pi_v is continuous on M^v\times \R_{>0}.

Proof: Every (Q,s)\in (\pi_v')^{-1}(3) has an open ball of radius \max_{i,j}\{d(\pi_v(Q)_i,\pi_v(Q)_j)\}/2-s around it that is still contained within (\pi_v')^{-1}(3). Similarly, every (Q,s)\in (\pi_v')^{-1}(2a) has an open ball of radius \min\left\{\frac12\text{diam}\left(\bigcap_{i=1}^{|v|}B(\pi_v(Q)_i,s)\right),\max_{i,j}\{d(\pi_v(Q)_i,\pi_v(Q)_j)\}\right\} \hspace{2cm} (1) around it that is still contained within (\pi_v')^{-1}(2a). The first expression in the \min makes sure the intersection is non-empty, and the second expression makes sure all elements of Q are not the same.

The set (\pi_v')^{-1}(1<2a) is open by the same argument as for 2a\in A, enlarging the open ball by removing the second expression in the \min of expression (1). Finally, the set (\pi_v')^{-1}(2a>2b<3) is open by the same argument, now enlarging the ball used for 2a\in A by removing the first expression in the \min of expression (1). \square

Let q\colon M^n\to \Ran^{\leqslant n}(M) be the natural quotient map, and \check C\colon \Ran^{\leqslant n}(M)\times \R_{>0}\to SC be the Čech simplical complex map. For the next propositions, we will use two maps f and g defined as \begin{array}{r c l} f\colon M^n\times \R_{>0} & \to & A^{2^n-n-1}, \\ (P,t) & \mapsto & \prod_{v\in T} \pi_v'(P,t), \end{array} \hspace{2cm} \begin{array}{r c l} g\colon \im(f) & \to & SC, \\ f(P,t) & \mapsto & \check C(q(P),t).\end{array} The map g is well-defined because a\in A^{2^n-n-1} with non-empty preimage in M^n\times \R_{>0} specifies whether or not every k-tuple of points has a simplex spanning it, for all k=2,\dots,n. This defines a unique simplicial complex, so choosing any (P,t)\in f^{-1}(a) will give the same Čech complex, up to renaming of vertices.

Proposition: The map f\colon M^n\times \R_{>0} \to A^{2^n-n-1} is continuous.

Proof: Let a\in A^{2^n-n-1} and suppose that f^{-1}(a)\neq \emptyset. Let a_i\in A be in the ith factor of a, and r_i the radius of the open ball decreed by Lemma 3 to still be within (\pi_v')^{-1}(a_i), where v is the ith tuple in the chosen order on T. Then every (P,t)\in f^{-1}(a) has an open ball of radius \min_i\{r_i\} around it that is still contained within f^{-1}(a), so f is continuous. \square

Proposition: The map g is monotonic.

 Note that any relation S\leqslant_{SC}S' may be split up as a chain of relations S=T_1\leqslant_{SC} \cdots \leqslant_{SC} T_\ell=S', where the only differences between T_i and T_{i+1} are either (i) T_i has a k-simplex \sigma that T_{i+1} does not have, or (ii) where T_i has a single 0-simplex where a k-simplex \sigma and all its faces used to be in T_{i+1}. Hence it suffices to show that properties 1 and 2 of Definition 1 are satisfied in cases (i) and (ii).

Proof: Case (i): Suppose that S\leqslant_{SC}S', and take a\in g^{-1}(S), a'\in g^{-1}(S') with a\leqslant_A a'. If there is b\in g^{-1}(S) and b'\in g^{-1}(S') such that b'\leqslant_A b, then g(b) has the k-simplex \sigma that g(b') does not have, but since b' is ordered lower than b, it must be that this k-simplex has collapsed to a point. Then we would be in case (ii), a contradiction, so property 1 holds in this case.

Now let i_1,\dots,i_{\sigma} be the indices of a' and a representing the (k+1)-fold intersection that describes \sigma, so a'_j = 3 and a_j = 2b for all j=i_1,\dots,i_\sigma. Take any b'\in g^{-1}(S'), which also has some indices \ell_1,\dots,\ell_\sigma representing this same (k+1)-fold intersection, so b'_j=3 at all j=\ell_1,\dots,\ell_\sigma. Let b\in A^{2^n-n-1} be the element with all the same factors as b', except at indices \ell_1,\dots,\ell_\sigma, which have been changed to 2b. This element b is still in \im(f) as removing only this k-simplex still leaves the well-defined simplex S' we assumed at the beginning. Hence g(b)=S' and property 2 holds. \\

Case (ii): Suppose that S\leqslant_{SC}S', and take a\in g^{-1}(S), a'\in g^{-1}(S') with a\leqslant_A a'. If there is b\in g^{-1}(S) and b'\in g^{-1}(S') such that b'\leqslant_A b, then g(b') has the k-simplex \sigma and all its faces that g(b) does not have, but since b' is ordered lower than b, it must be that we have introduced \sigma and all its faces. Then we would be in case (i), or a chain of case (i) situations, a contradiction, so property \ref{1mon} holds in this case.

Now let i_1,\dots,i_{\sigma} be the indices of a' and a representing the (k+1)-fold intersection that describes \sigma, and all the implied (f+1)-fold intersections that describe the f-faces of \sigma, f>0. That is, a'_j = 2a and a_j = 1 for all j=i_1,\dots,i_\sigma. Take any b'\in g^{-1}(S'), which also has some indices \ell_1,\dots,\ell_\sigma representing this same (k+1)-fold (and lower) intersection, so b'_j=3 at all j=\ell_1,\dots,\ell_\sigma. Let b\in A^{2^n-n-1} be the element with all the same factors as b', except at indices \ell_1,\dots,\ell_\sigma, which have been changed to 1. This element b is still in \im(f) as collapsing this k-simplex and all its faces to a single 0-simplex still leaves the well-defined simplex S' we assumed at the beginning. Hence g(b)=S' and property 2 holds. \square

Since g is monotonic, by Lemma 2 the relation \leqslant_{SC} is a partial order on SC.

Sunday, April 22, 2018

A functor from entry paths to the nerve of simplicial complexes

Fix n\in \Z_{>0} and let X=\Ran^{\leqslant n}(M)\times \R_{>0} for M a compact, connected PL manifold embedded in \R^N. Take \widetilde h\colon X\to (B,\leqslant) the conical stratifying map from a previous post (``Conical stratifications via semialgebraic sets," 2018-04-16) compatible with the natural stratification h\colon X\to SC. The goal of this post is to construct a functor F\colon \Sing_B(X) \to N(SC) from the \infty-category of entry paths that encodes the structure of X.

Recall that a simplicial set is a functor, an element of \text{Fun}(\Delta^{op},\Set). A simplicial set S is defined by its collection of n-simplices S_n, its face maps s_i:S_{n-1}\to S_n, and degeneracy maps d_i:S_{n+1}\to S_k, for all i=0,\dots,n. For the first simplicial set of interest in this post, we have
\begin{align*} \Sing_B(X)_n & = \Hom_{\Top}^B(|\Delta^n|,X), \\ \left(s_i\colon [n]\to [n-1]\right) & \mapsto \left( \begin{array}{c} \left(|\Delta^{n-1}|\to X \right) \mapsto \left(|\Delta^n|\to X\right) \\ \text{collapses $i$th with $(i+1)$th vertex, then maps as source} \end{array}\right)\\ \left(d_i\colon [n]\to [n+1]\right) & \mapsto  \left(\begin{array}{c} \left(|\Delta^{n+1}|\to X \right) \mapsto \left(|\Delta^n|\to X\right) \\ \text{maps as $i$th face of source map} \end{array}\right) \end{align*}
We write \Hom^B_{\Top} for the subset of \Hom_{\Top} that respects the stratification B in the context of entry paths. For the second simplicial set, the nerve, we have
\begin{align*} N(SC)_n & = \{(S_0\tov{f_1} \cdots \tov{f_n} S_n)\ :\ S_i\in SC,\ f_i\ \text{are simplicial maps}\}, \\ \left(s_i\colon [n]\to [n-1]\right) & \mapsto \left( \left(S_0\tov{f_1}\cdots \tov{f_{n-1}} S_{n-1} \right) \mapsto \left(S_0\tov{f_1} \cdots\tov{f_i} S_i \tov{\id} S_i\tov{f_{i+1}} \cdots \tov{f_{n-1}} S_{n-1}\right)\right),\\ \left(d_i\colon [n]\to [n+1]\right) & \mapsto \left(\begin{array}{r l} i=0: & \left(S_0\cdots S_{n+1} \right) \mapsto \left(S_1\tov{f_2}\cdots \tov{f_{n+1}} S_{n+1} \right) \\ 0<i<n: & \left(S_0 \cdots S_{n+1} \right) \mapsto \left(S_0\tov{f_1} \cdots\tov{f_{i-1}} S_{i-1} \tov{f_{i+1}\circ f_i} S_{i+1} \tov{f_{i+2}} \cdots \tov{f_{n+1}} S_{n+1}\right) \\ i=n: & \left(S_0 \cdots  S_{n+1} \right) \mapsto \left(S_0\tov{f_1}\cdots \tov{f_n} S_n \right) \end{array} \right).  \end{align*}
 Define F on k-simplices as F\left(\gamma\colon |\Delta^k|\to \Ran^{\leqslant n}(M)\times \R_{>0}\right) = \left(\widetilde h(\gamma(1,0,\dots,0)) \tov{\left(\widetilde h\circ \gamma \circ s_k\circ \cdots \circ s_2\right)\left( |\Delta^1|\right)} \cdots \tov{\left(\widetilde h\circ \gamma \circ s_{k-2}\circ \cdots \circ s_0\right)\left(|\Delta^1|\right)} \widetilde h(\gamma(0,\dots,0,1))\right). A morphism in \Sing_B(X) is a composition of face maps s_i and degeneracy maps d_i, so F must satisfy the commutative diagrams

for all s_i, d_i. Since the maps are unwieldy when in coordinates, we opt for heuristic arguments, neglecting to trace out notation-heavy diagrams.

Commutativity of the diagram on the left is immediate, as considering a simplex |\Delta^{n-1}| as the ith face of a larger simplex |\Delta^n| is the same as adding a step that is the identity map in the Hamiltonian path of vertices of |\Delta^{n-1}|. Similarly, observing that the image of the shortest path v_{i-1}\to v_i\to v_{i+1} in |\Delta^{n+1}|, for v_i = (0,\dots,0,1,0,\dots,0) the ith standard basis vector, induced by an element \gamma\colon |\Delta^{n+1}|\to X in \Sing_B(X)_{n+1}, is homotopic to the image of the shortest path v_{i-1} \to v_{i+1} shows that the diagram on the right commutes. Since F is a natural transformation between the two functors \Sing_B(X) and N(SC), it is a functor on the functors as simplicial sets.

Remark: The particular choice of X did not seem to play a large role in the arguments above. However, the stratifying map \widetilde h\colon X\to B has image sitting inside SC, the nerve of which is the target of F, and every morphism in \Sing_B(X) can be interpreted as a relation in B\subseteq SC (both were necessary for the commutativity of the diagrams). Hence it is not unreasonable to expect a similar functor \Sing_A(X)\to N(A') may exist for a stratified space X\to A\subseteq A'.

Friday, April 20, 2018

Exit paths and entry paths through \infty-categories

Let X be a topological space, (A,\leqslant) a poset, and f: X\to (A,\leqslant) a continuous map.

Definition: An exit path in an A-stratified space X is a continuous map \sigma: |\Delta^n|\to X for which there exists a chain a_0\leqslant \cdots \leqslant a_n in A such that f(\sigma(t_0,\dots,t_i,0,\dots,0))=a_i for t_i\neq 0. An entry path is a continuous map \tau: |\Delta^n|\to X for which there exists a chain b_0\leqslant \cdots \leqslant b_n in A such that f(\tau(0,\dots,0,t_i,\dots,t_n))=b_i for t_i\neq 0.

Up to reordering of vertices of \Delta^n and induced reordering of the realization |\Delta^n|, an exit path is the same as an entry path. The next example describes this equivalence.

Example: The standard 2-simplex |\Delta^2| is uniquely an exit path and an entry path with a chain of 3 distinct elements, stratfied in the ways described below.
Recall the following algebraic constructions, through Joyal's quasi-category model:
  • A simplicial set is a functor \Delta^{op}\to \Set.
  • A Kan complex is a simplicial set satisfying the inner horn condition for all 0\leqslant k\leqslant n. That is, the kth n-horn lifts (can be filled in) to a map on \Delta^n.
  • An \infty-category is a simplicial set satisfying the inner horn condition for all 0<k<n.
Moreover, if the lift is unique, then the Kan complex is the nerve of some category. Recall also the category \Sing(X) = \{continuous \sigma: |\Delta^n|\to X\}, which can be combined with the stratification f: X\to A of X

Remark: The subcategory \Sing^A(X) of exit paths and the subcategory \Sing_A(X) of entry paths are full subcategories of \Sing(X), with (\Sing^A(X))^{op} = \Sing_A(X). If the stratification is conical, then these two categories are \infty-categories.
Recall the nerve construction of a category. Here we are interested in the nerve of the category SC of simplicial complexes, so N(SC)_n = \{sequences of n composable simplicial maps\}. Recall the kth n-horns, which are compatible diagrams of elements of N(SC)_n. In general, they are colimits of a diagram in the category \Delta. That is, \Lambda^n_k := \colim \left(\bigsqcup_{0\leqslant i<j\leqslant n} \Delta^{n-2} \rightrightarrows \bigsqcup_{0\leqslant i\leqslant n \atop i\neq k} \Delta^{n-1}\right). Example: The images of the 3 different types of 2-horns and 4 different types of 3-horns in SC are given below. Note that they are not unique, and depend on the choice of simplices S_i (equivalently, on the choice of functor \Delta^{op}\to SC).
For example, the 0th 2-horn \Lambda^2_0 can be filled in if there exists a simplicial map h: S_1\to S_2 in SC (that is, an element of N(SC)_1) such that h\circ f = g. Similarly, the 1st 3-horn \Lambda^3_1 can be filled in if there exists a functor F: [0<1<2]\to SC for which F(0<1)=f_{02}, F(0<2)=f_{03}, and F(1<2)=f_{23} (equivalently, a compatible collection of elements of N(SC)_2).

Definition: Let A,B be \infty-categories. A functor F: A\to B is a morphism of the simplicial sets A,B. That is, F:A\to B is a natural transformation for A,B\in \text{Fun}(\Delta^{op},\Set).

A functor of simplicial sets of a particular type can be identified with a functor of 1-categories. Recall the nerve of a 1-category, which turns it into an \infty-category. This construction has a left adjoint.

Definition: Let \mathcal C be an \infty-category. The homotopy category h\mathcal C of \mathcal C has objects \mathcal C_0 and morphisms \Hom_{h\mathcal C}(X,Y) = \pi_0(\text{Map}_{\mathcal C}(X,Y)).

By Lurie, h is left-adjoint to N. That is, h : \sSet \rightleftarrows \text{Cat} : N, or \text{Map}_{\sSet}(\mathcal C,N(\mathcal D)) \cong \text{Map}_{\text{Cat}}(h\mathcal C, \mathcal D), for any \infty-category \mathcal C and any 1-category \mathcal D. Our next goal is to describe a functor \Sing_A(X)\to N(SC), maybe through this adjunction, where SC is the 1-category of simplicial complexes and simplicial maps.

References: Lurie (Higher topos theory, Sections 1.1.3 and 1.2.3), Lurie (Higher algebra, Appendix A.6), Goerss and Jardine (Simplicial homotopy theory, Section I.3), Joyal (Quasi-categories and Kan complexes)

Monday, April 16, 2018

Conical stratifications via semialgebraic sets

The goal of this post is to describe a conical stratification of \Ran_{\leqslant n}(M)\times \R_{\geqslant 0} that refines the stratification previously seen (in "Exit paths, part 2," 2017-09-28, and "Refining stratifiations," 2018-03-11). Thanks to Shmuel Weinberger for the key observation that the strata under consideration are nothing more than semialgebraic sets, which are triangulable, and so admit a conical stratification via this triangulation.

Remark: Fix n\in \Z_{>0}, let M be a smooth, compact, connected, embedded submanifold in \R^N, and let M^n have the Hausdorff topology. We will be interested in M^n\times \R_{>0}, though this will be viewed as the compact set M^n\times [0,K]\subseteq \R^{nN+1} for some K large enough (for instance, larger than the diameter of M) when necessary. The point 0 is added for compactness.

Stratification of the Ran space by semialgebraic sets


We begin by stratifying M^n\times \R_{>0} by a poset A, creating strata based on the pairwise distance between points in each M component. Then we take that to a stratification of the quotient \Ran^{\leqslant n}(M)\times \R_{>0} via the action of the symmetric group S_n and overcounting of points.

Definition: Define a partial order \leqslant on the set A = \big\{partitions of (\{1,\dots,n\}^2\setminus \Delta)/S_2 into 4 parts\big\} of ordered 4-tuples of sets by (Q,R,S,T) \leqslant \left(Q\setminus Q',\ R\cup Q' \cup S',\ S\setminus (S'\cup S''),\ T\cup S''\right), for all Q'\subseteq Q and S',S''\subseteq S, with S'\cap S'' = \emptyset.

The diagram to keep in mind is the one below, with arrows pointing from lower-ordered elements to higher-ordered elements. Once we pass to valuing the 4-tuple in simplicial complexes, moving between Q and R will not change the simplicial complex type (this comes from the definition of the Vietoris--Rips complex).

Lemma 1: The map f: M^n\times \R_{>0}\to (A,\leqslant) defined by \begin{align*} (\{P_1,\dots,P_n\},t)\mapsto \bigg( \{(i,j>i)\ & :\ P_i=P_j\},\ \{(i,j>i)\ :\ d_M(P_i,P_j)<t\},\\ & \{(i,j>i)\ :\ d_M(P_i,P_j)=t\},\ \{(i,j>i)\ :\ d_M(P_i,P_j)>t\}\bigg) \end{align*} is continuous in the upset topology on (A,\leqslant).

Proof: Choose (Q,R,S,T)\in A and consider the open set U = U_{(Q,R,S,T)} based at (Q,R,S,T). Take (P,t)\in f^{-1}(U), which we claim has a small neighborhood still contained within f^{-1}(U). If we move a point P_i slightly that was exactly distance t away from P_j, then the pair (i,j) was in S, but is now in either R or T, and both (Q,R\cup\{(i,j)\},S\setminus \{(i,j)\},T) and (Q,R,S\setminus \{(i,j)\},T\cup \{(i,j)\}) are ordered higher than (Q,R,S,T), so the perturbed point is still in f^{-1}(U). If P_i=P_j in P and we move them apart slightly, since t\in \R_{>0}, the pair (i,j) will move from Q to R, and (Q,R,S,T) \leqslant (Q\setminus \{(i,j)\},R\cup \{(i,j)\},S,T), so the perturbed point is still in f^{-1}(U). For all pairs (i,j) in R or T, the distances can be changed slightly so that the pair still stays in R or T, respectively. Hence f is continuous. \square

This shows that M^n\times \R_{>0} is stratified by (A,\leqslant), using Lurie's definition of a (poset) stratification, which just needs a continuous map to a poset. Our goal is to work with the Ran space of M, instead of the n-fold product of M, which are related by the natural projection map \pi : M^n\to \Ran^{\leqslant n}(M), taking P=\{P_1,\dots,P_n\} to the unordered set of distinct elements in P. We also would like to stratify \Ran^{\leqslant n}(M)\times \R_{>0} by simplicial complex type, so we need the following map.

Definition: Let g: (A,\leqslant)\to SC be the map into simplicial complexes that takes (Q,R,S,T) to the clique complex of the simple graph C on n-k vertices, for |Q|=k(k+1)/2, defined as follows: 
  • V(C) = \{[i]\ :\ i=1,\dots,n,\ [j]= [i] \text{\ iff\ } (i,j)\in Q\},
  • E(C) = \{([i],[j])\ :\ (i,j)\in R\cup S\}.
We require C to be simple, so if (i,j)\in Q and (i,\ell),(j,\ell)\in R\cup S, we only add one edge ([i],[\ell])=([j],[\ell]) to C.

The map g induces a partial order \leqslant on SC from the partial order on A, with C\leqslant C' in SC whenever there is (Q,R,S,T)\in g^{-1}(C) and (Q',R',S',T')\in g^{-1}(C') such that (Q,R,S,T) \leqslant (Q',R',S',T') in A. Note that if C\in SC is not in the image of g, then it is not related to any other element of SC. By the universal property of the quotient and continuity of f and g (as A and SC are discrete), there is a continuous map h:\Ran^{\leqslant n}(M)\times \R_{>0}\to (SC,\leqslant) such that the diagram
commutes. Hence \Ran^{\leqslant n}(M)\times \R_{>0} is stratified by (SC,\leqslant).

Remark: The map \pi can be thought of as a quotient by the action of the symmetric group S_n, followed by the quotient of the equivalence relation \{P^1_1,\dots,P^{\ell_1}_1,P^1_2,\dots,P^{\ell_2}_2,P^1_3,\dots,P^{\ell_k}_k\} \ \ \sim\ \ \{P^1_1,\dots,P^{\ell_1-1}_1,P^1_2,\dots,P^{\ell_2+1}_2,P^1_3,\dots,P^{\ell_k}_k\} on M^n, for all possible combinations \ell_1+\cdots + \ell_k =n and 1\leqslant k\leqslant n-1, where P_m^i=P_m^j for all 1\leqslant i<j\leqslant \ell_m.


Semialgebraic geometry


Next we move into the world of semialgebraic sets and triangulations, following Shiota. Here we come across a more restrictive notion of stratification of a manifold X, which requires a partition of X into submanifolds \{X_i\}. If Lurie's stratification f:X\to A gives back submanifolds \{f^{-1}(a)\}_{a\in A}, then we have Shiota's stratification. Conversely, the poset (\{X_i\},\leqslant), for X_i \leqslant X_j iff X_i \subseteq \closure(X_j) is always a stratification in the sense of Lurie.

Definition 2: A semialgebraic set in \R^N is a set of the form \bigcup_{\text{finite}} \{x\in \R^N\ :\ f_1(x)=0,f_2(x)>0,\dots,f_m(x)>0\}, for polynomial functions f_1,\dots,f_m on \R^N. A semialgebraic stratification of a space X\subseteq \R^N is a partition \{X_i\} of X into submanifolds that are semialgebraic sets.

Next we observe that the strata of M^n\times \R_{>0} are semialgebraic sets, with the preimage theorem and I.2.9.1 of Shiota, which says that the intersection of semialgebraic sets is semialgebraic. Take (Q,R,S,T)\in A  and note that f^{-1}(Q,R,S,T) = \left\{(\{P_1,\dots,P_n\},t)\in M^n\times \R_{>0}\ :\ \begin{array}{r l} d(P_i,P_j) = 0 & \forall (i,j)\in Q,\\ t-d(P_i,P_j) = 0 & \forall (i,j)\in S, \\ t-d(P_i,P_j) > 0 & \forall (i,j)\in R, \\ d(P_i,P_j) - t > 0 & \forall (i,j)\in T. \end{array}\right\} Here d means distance on the manifold, and we assume the metric to be analytic. Alternatively, d could be Euclidean distance between points on the embedding of M^n\times \R_{>0}, induced by the assumed embedding of M.

For his main Theorem II.4.2, Shiota uses cells, but we opt for simplices instead, and for cell complexes we use simplicial complexes. Every cell and cell complex admits a decomposition into simplicial complexes, even without introducing new 0-cells (by Lemma I.3.12), so we do not lose any generality.

Definition 3: Let X,Y be semialgebraic sets.
  • A map f: X\to Y is semialgebraic if the graph of f is semialgebraic.
  • A semialgebraic cell triangulation of a semialgebraic set X is a pair (C,\pi), where C is a simplicial complex and \pi: |C|\to X is a semialgebraic homeomorphism for which \pi|_{\interior(\sigma)} is a diffeomorphism onto its image.
  • A semialgebraic cell triangulation (C,\pi) is compatible with a family \{X_i\} of semialgebraic sets if \pi(\interior(\sigma))\subseteq X_i or \pi(\interior(\sigma))\cap X_i = \emptyset for all \sigma\in C and all X_i.

A semialgebraic cell triangulation (C,\pi) of X induces a stratification X\to (C_0 \cup \{\pi(\interior(\sigma))\},\leqslant), where the order is the one mentioned just before Definition 2. We use the induced stratification and the cell triangulation interchangeably, specifically in Proposition 4.

A compatible conical stratification


Finally we put everything together to get a conical stratification of \Ran^{\leqslant n}(M)\times \R_{>0}. Unfortunately we have to restrict ourselves to piecewise linear manifolds, or PL manifolds, which are homeomorphic images of geometric realizations of simplicial complexes, as otherwise we cannot claim M is a semialgebraic set. We can also just let M=\R^k, as the point samples we are given could be coming from an unknown space.

Proposition 4: Let M be a PL manifold embedded in \R^N. There is a conical stratification \widetilde h:\Ran^{\leqslant n}(M)\times \R_{>0}\to (B,\leqslant) compatible with the stratification h: \Ran^{\leqslant n}(M)\times \R_{>0}\to (SC,\leqslant).

Proof: (Sketch) The main lifting is done by Theorem II.4.2 of Shiota. Since M is PL, it is semialgebraic, and so M^n\times \R_{>0}\subseteq \R^{nN+1} is semialgebraic, by I.2.9.1 of Shiota. Since the quotient \pi of diagram (1) is semialgebraic, the space \Ran^{\leqslant n}(M)\times \R_{>0} is semialgebraic, by Scheiderer. Similarly, \{f^{-1}(a)\}_{a\in A} is a family of semialgebraic sets, where f is the map from Lemma 1.  Theorem II.4.2 gives that \Ran^{\leqslant n}(M)\times \R_{>0} admits a cell triangulation (K,\tau) compatible with \{h^{-1}(S)\}_{S\in SC}. By the comment after Definition \ref{semialgdef}, this means we have a stratification \Ran^{\leqslant n}(M)\times \R_{>0}\to (K_0\cup \{\tau(\interior(\sigma))\}_{\sigma\in K},\leqslant). Further, by Proposition A.6.8 of Lurie, we have a conical stratification |K|\to (B,\leqslant). This is all described by the solid arrow diagram below.


The vertical induced map comes as the poset B has the exact same structure as the abstract suimplicial complex K. The diagonal induced map comes as the map |K|\to \Ran^{\leqslant n}(M)\times \R_{>0} is a homeomorphism, and so has a continuous inverse. Composing the inverse with the conical sratification of Lurie, we get a conical stratification of \Ran^{\leqslant n}(M)\times \R_{>0}. Composing the vertical induced arrow and the maps to (SC,\leqslant) show that there is a conical stratification of \Ran^{\leqslant n}\times \R_{>0} compatible with its simplicial complex stratification from diagram (1). \square

Shiota actually requires that the space that admits a triangulation be closed semialgebraic, and having \R_{>0} violates that condition. Replacing this piece with \R_{\geqslant 0}, then applying Shiota, and afterwards removing the t=0 piece we get the same result.

Remark: Every (sufficiently nice) manifold admits a triangulation, so it may be possible to extend this result to a larger class of manifolds, but it seems more sophisticated technology is needed.

References: Shiota (Geometry of subanalytic and semialgebraic sets, Chapters I.2, I.3, II.4), Scheiderer (Quotients of semi-algebraic spaces), Lurie (Higher algebra, Appendix A.6)